首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique using evaporated Ag coated with double layers of Al2O3 and silicon oxide to produce surface films having low solar absorptivity (α) and high total normal and hemispherical emissivities (?N and ?) is described. α of the Ag + Al2O3 + silicon oxide film combination was determined to be less than 0.07 and α/? values of 0.1 could be readily achieved. Surface films of this type were found to be extremely stable during simulated solar uv irradiation.  相似文献   

2.
Herein we report the room-temperature epitaxial growth of V2O3 films by laser molecule beam epitaxy. X-ray diffraction profiles show the room-temperature epitaxial V2O3 films orient in the [110] direction on α-Al2O3(0001) substrates. Atomic force microscopy measurements reveal that the ultra-smooth surfaces with root-mean-square surface roughness of 0.11 nm and 0.28 nm for 10-nm-thick and 35-nm-thick V+2O3 film, respectively. X-ray photoelectron spectroscopy results indicate the V3 oxidation state in the films. Typical metal-insulator transition is observed in films at about 135 K. The resistivities at 300 K are approximately 0.8 mΩ cm and 0.5 mΩ cm for 10-nm-thick and 35-nm-thick V2O3 film, respectively.  相似文献   

3.
The extent and phase chemical composition of the interface forming under atomic layer deposition (ALD) of a 6-nm-thick Al2O3 film on the surface of crystalline silicon (c-Si) has been studied by depthresolved, ultrasoft x-ray emission spectroscopy. ALD is shown to produce a layer of mixed Al2O3 and SiO2 oxides about 6–8 nm thick, in which silicon dioxide is present even on the sample surface and its concentration increases as one approaches the interface with the substrate. It is assumed that such a complex structure of the layer is the result of interdiffusion of oxygen into the layer and of silicon from the substrate to the surface over grain boundaries of polycrystalline Al2O3, followed by silicon oxidation. Neither the formation of clusters of metallic aluminum near the boundary with c-Si nor aluminum diffusion into the substrate was revealed. It was established that ALD-deposited Al2O3 layers with a thickness up to 60 nm have similar structure.  相似文献   

4.
In Auger Electron Spectrometry relatively high primary electron current density is usually used in order to obtain a good signal-to-noise ratio. As a consequence, a number of phenomena occurs, which can substantially modify—or even destroy—the sample, and impair the results of the analysis.

In this communication we report some observations on the electron and ion beam interaction on some of the insulating and conducting films used in the silicon device technology. Among the materials considered, silicon nitride and P-doped silicon dioxide are of primary interest, and will be treated in some detail; results on other films, both insulating (Al2O3, B-doped SiO2, etc.) and conducting (Al-Si alloys) will also be reported.

The electron beam causes the oxides (B, Al, Si, P) to be reduced, as shown by the decrease of the height of the low energy, chemically shifted peaks (BKVV, AlLVV, SiLvv, PLvv) and by the contemporary increase of the height of the elemental peaks. In phosphorus doped glasses the electron beam also induces a strong surface P enrichment, followed by a P desorption. Silicon nitride was found to be quite stable against the e-b irradiation in “good” vacuum, but very sensitive to the e-b induced oxidation even at (total) pressure as low as 5 × 1010 torr. This is a very important fact to be taken into account when evaluating thin Si3N4 films, because it can change the apparent film stoichiometry.

Some metallic films are also preferentially oxidized by the electron beam; in Al/Si diluted alloy (0.1÷2% silicon) a strong surface silicon enrichment was found to take phase on small-grained thin films, but not on bulk material.

Our results show that much care has to be taken when performing or interpreting the AES data, and how to use, in some cases, the e-b irradiation effects to increase the sensitivity of the method.  相似文献   

5.
Al2O3 incorporated HfO2 films grown by atomic layer deposition (ALD) were investigated by high-resolution X-ray photoelectron spectroscopy (HRXPS). The core level energy state of a 15 Å thick film showed a shift to higher binding energy, as the result of a silicate formation and Al2O3 incorporation. The incorporation of Al2O3 into the HfO2 film had no effect on silicate formation at the interface between the film and Si, while the ionic bonding characteristics and hybridization effects were enhanced compared to a pure HfO2 film. The dissociation of the film in an ultrahigh vacuum (UHV) is effectively suppressed compared to a pure HfO2 film, indicating an enhanced thermal stability of Hf-Al-O. Any dissociated Al2O3 on the film surface was completely removed into the vacuum by vacuum annealing treatment over 850 °C, while HfO2 contributed to Hf silicide formation on the film surface.  相似文献   

6.

The results of structural and magnetic investigations of nanogranular Co–Al2O3 films formed from Co3O4/Al thin-film layered structures upon vacuum annealing are reported. The Co3O4/Al films have been obtained by sequential reactive magnetron sputtering of a metallic cobalt target in a medium consisting of the Ar + O2 gas mixture and magnetron sputtering of an aluminum target in the pure argon atmosphere. It is shown that such a technique makes it possible to obtain nanogranular Co–Al2O3 single- and multilayer thin films with a well-controlled size of magnetic grains and their distribution over the film thickness.

  相似文献   

7.
Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al2O3 layer. The double-coating of PEM + Al2O3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al2O3 layer. The enhanced water vapor barrier characteristics of the PEM + Al2O3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.  相似文献   

8.
The distribution of the phase and chemical composition at an Al2O3/Si interface is studied by depth-resolved ultrasoft x-ray emission spectroscopy. The interface is formed by atomic layer deposition of Al2O3 films of various thicknesses (from several to several nanometers to several hundreds of nanometers) on the Si(100) surface (c-Si) or on a 50-nm-thick SiO2 buffer layer on Si. L 2,3 bands of Al and Si are used for analysis. It is found that the properties of coatings and Al2O3/Si interfaces substantially depend on the thickness of the Al2O3 layer, which is explained by the complicated character of the process kinetics. At a small thickness of coatings (up to 10–30 nm), the Al2O3 layer contains inclusions of oxidized Si atoms, whose concentration increases as the interface is approached. As the thickness increases, a layer containing inclusions of metallic Al clusters forms. A thin interlayer of Si atoms occurring in an unconventional chemical state is found. When the SiO2 buffer layer is used (Al2O3/SiO2/Si), the structure of the interface and the coating becomes more perfect. The Al2O3 layer does not contain inclusions of metallic aluminum, does not vary with the sample thickness, and has a distinguished boundary with silicon.  相似文献   

9.
We analyzed the rapid heating properties of 50-nm-thick silicon films via 250-nm-thick SiO2 intermediate layers by heat diffusion from joule heating induced by electrical current flow in chromium strips. Numerical heat-flow simulation resulted in that the silicon films were heated to the melting point by a joule-heating intensity above 1 MW/cm2. A marked increase in electrical conductance associated with silicon melting was experimentally detected. Taper-shaped chromium strips detected the temperature gradient in the lateral direction caused by the spatial distribution of the joule-heating intensity. Crystallization occurred according to the temperature gradient. A 2–4-μm lateral crystalline grain growth was demonstrated for the silicon films. Received: 20 November 2001 / Accepted: 22 November 2001 / Published online: 20 March 2002  相似文献   

10.
X.X. Guo 《Surface science》2004,549(3):211-216
We studied parallel conductivities of pure BaF2 films with thicknesses ranging from 35 to 300 nm, epitaxially grown on Al2O3(0 1 2) substrates by molecular beam epitaxy technique. The overall conductivities of the films are found to increase with decreasing thickness. The detailed investigation of the overall conductance as a function of the thickness permits the deconvolution of bulk and boundary effects, the latter being attributed to distinct space charge effects in the interface between BaF2 film and Al2O3 substrate. The (extrinsic) Debye length (λ) is estimated to be about 8 nm at T=593 K, which corresponds to an impurity content of 1018/cm3 (singly ionized dopant assumed). This is consistent with the fact that we observed a constant boundary contribution for all investigated films (film thickness >4λ). It is also consistent with the Debye length observed in a previous report on CaF2/BaF2 heterolayers fabricated by the same technique, in which the low temperature enhancement was also attributed to space charges in BaF2 [Nature 408 (2000) 946]. Only at low temperatures (below 370 °C), the conductance seems to be influenced by strain effect.  相似文献   

11.
Features of the preparation of magnetic semiconductor films with the composition Mg(Fe0.8Ga0.2)2O4?δ on a 200-nm-thick silicon substrate are presented. Both a pure substrate surface and one with protective TiO x layers with a crystallization temperature of 900–1000°C for 30 min were used. The effect of the protective layers on the formation of the surface morphology of the films and their magnetic properties is shown.  相似文献   

12.
The broad energy distributions of the condensing particles typically encountered in ion assisted vapor deposition techniques are often a drawback when attempting to understand the effect of the energetic bombardment on the film properties. In the current study, a monoenergetic Al+ beam generated by a filtered cathodic arc discharge is employed for the deposition of alumina (Al2O3) films at well defined Al+ ion energies between 4 eV and 200 eV at a substrate temperature of 720 °C. Structural analysis shows that Al+ energies of 40 eV or larger favor the formation of the thermodynamically stable α‐Al2O3 phase at the expense of other metastable Al2O3 polymorphs. The well defined ion energies are used as input for Monte‐Carlo based simulations of the ion–surface interactions. The results of these simulations reveal that the increase of the Al+ ion energy leads to an increase in the fraction of ions subplanted into the growing film. These findings underline the previously not considered role of subsurface processes on the phase formation of ionized physical vapor deposited Al2O3 films. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The origin behind crystalline silicon surface passivation by Al2O3 films is studied in detail by means of spatially‐resolved electron energy loss spectroscopy. The bonding configurations of Al and O are studied in as‐deposited and annealed Al2O3 films grown on c‐Si substrates by plasma‐assisted and thermal atomic layer deposition. The results confirm the presence of an interfacial SiO2‐like film and demonstrate changes in the ratio between tetrahedrally and octahedrally coordinated Al in the films after annealing. These observations reveal the underlying origin of c‐Si surface passivation by Al2O3. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
High-quality ZnO thin films were grown on single-crystalline Al2O3(0001) and amorphous SiO2/Si(100) substrates at 400–640 °C using laser molecular beam epitaxy. For film growth, the third harmonics of a pulsed Nd:YAG laser were illuminated on a ZnO target. The ZnO films were epitaxially grown on Al2O3(0001) with the narrow X-ray diffraction full width at half maximum (FWHM) of 0.04° and the films on SiO2/Si(100) exhibited a preferred c-axis orientation. Furthermore, the films exhibited excellent optical properties in photoluminescence (PL) measurements with very sharp excitonic and weak deep-level emission peaks. At 15 K, PL FWHM values of the films grown on Al2O3(0001) and SiO2/Si(100) were 3 and 18 meV, respectively. Received: 8 May 2001 / Accepted: 18 September 2001 / Published online: 20 December 2001  相似文献   

15.
张祥  刘邦武  夏洋  李超波  刘杰  沈泽南 《物理学报》2012,61(18):187303-187303
介绍了Al2O3的材料性质及其原子层沉积制备方法, 详细阐述了该材料的钝化机制(化学钝化和场效应钝化), 并从薄膜厚度、热稳定性及叠层钝化等角度阐释其优化方案. 概述了Al2O3钝化在晶体硅太阳电池中的应用, 主要包括钝化发射极及背面局部扩散电池和钝化发射极及背表面电池. 最后, 对Al2O3钝化工艺的未来研究方向和大规模的工业应用进行了展望.  相似文献   

16.
In this paper, nickel nanoparticles (Ni NPs) were deposited on planar silicon and pyramidal silicon wafers by the magnetron sputtering method, and then these Ni NP-covered samples were etched in a hydrofluoric acid, hydrogen peroxide, and deionized water mixed solution at room temperature to fabricate a low reflective silicon surface. An alumina (Al2O3) film was then deposited on the surface of the as-etched pyramidal sample by atomic layer deposition to further reduce the reflectance. The morphologies and compositions of these samples were studied by using a field emission scanning electron microscope attached to an energy-dispersive X-ray spectrometer. The surface reflectance measurements were carried out with a UV-Vis-NIR spectrophotometer in a wavelength range of 200–1100 nm. The SEM images show that the as-etched planar and pyramidal silicon samples were covered with many rhombic nanostructures and that some nanostructures on the planar silicon surface were ready to exhibit a flower-like burst. The reflectances of the as-etched planar and pyramidal silicon samples were 5.22 % and 3.21 % in the wavelength range of 400–800 nm, respectively. After being coated with a 75-nm-thick Al2O3 film, the etched pyramidal silicon sample showed an even lower reflectance of 2.37 % from 400 nm to 800 nm.  相似文献   

17.
New complex buffer layers based on a porous material have been developed for epitaxial growth of GaN films on Si substrates. The characteristics of gallium nitride heteroepitaxial layers grown on silicon substrates with new buffer layers by metal-organic vapor phase epitaxy are investigated. It is shown that the porous buffer layers improve the electric homogeneity and increase the photoluminescence intensity of epitaxial GaN films on Si substrates to the values comparable with those for reference GaN films on Al2O3 substrates. It is found that a fianite layer in a complex buffer is a barrier for silicon diffusion from the substrate into a GaN film.  相似文献   

18.
张歆  章晓中  谭新玉  于奕  万蔡华 《物理学报》2012,61(14):147303-147303
随着能源危机的加剧,太阳能电池作为开发和利用太阳能的一种普遍形式, 日益受到世界各国的重视.随着太阳能电池向着高效率、薄膜化、无毒性和原材料丰富的方向发展, 单纯的硅系太阳能电池已经无法达到这样的要求,因此新的材料和工艺的开发利用迫在眉睫. 本文研究了碳材料在硅异质节上实现光伏效应的改善及其可能在太阳能电池上的应用. 采用脉冲激光沉积方法制备的Co2-C98/Al2O3/Si异质结构在标准日光照射 (AM1.5, 100 mW/cm2)条件下,可获得0.447 V的开路电压和18.75 mA/cm2的电流密度, 转换效率可达3.27%.通过电容电压特性和暗条件下的电输运性能测量, 证明了氧化铝层的引入不但对单晶硅的表面起到了物理钝化作用,减小了反向漏电流, 使异质结界面缺陷、界面能级和复合中心减少,还起到了场效应钝化作用, 增加了异质结界面的势垒高度,增加了开路电压,使异质结的光伏效应显著增强.  相似文献   

19.
鲍善永  董武军  徐兴  栾田宝  李杰  张庆瑜 《物理学报》2011,60(3):36804-036804
利用脉冲激光沉积技术,通过改变沉积过程中的氧气压力,在蓝宝石(0001)基片上制备了一系列ZnMgO合金.通过X射线衍射、反射和透射光谱以及室温和变温荧光光谱,对薄膜的结构和光学性能进行了系统地表征,分析了工作气压对ZnMgO合金薄膜的结晶质量及光学特性的影响.研究结果表明:随着沉积环境中氧气压力的增大,ZnMgO薄膜的结晶质量下降,富氧环境下,与蓝宝石晶格平行的ZnO晶粒的出现是导致薄膜结晶质量下降的主要原因;相对于本征ZnO,不同氧气环境下沉积的ZnMgO薄膜的紫外荧光峰均出现了不同程度的蓝移.随着工 关键词: ZnO Mg掺杂 脉冲激光沉积 薄膜生长 光学特性  相似文献   

20.
Time-resolved luminescence experiments have been set up in order to study the interaction of 193-nm laser radiation with dielectric thin films. At room temperature, Al2O3 coatings show photoluminescence upon ArF excimer laser irradiation, with significant intensity contributions besides the known substrate emission. Time- and energy-resolved measurements indicate the presence of oxygen-defect centers in Al2O3 coatings, which suggests a strong single-photon interaction at 193 nm by F+ and F center absorption. Measurements on highly reflective thin-film stacks, consisting of quarter-wave Al2O3 and SiO2 layers, indicate similar UV excitations, mainly from color centers of Al2O3. Received: 20 February 2002 / Accepted: 11 April 2002 / Published online: 5 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号