首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The one-dimensional wavenumber spectra of turbulent ionization waves were measured from the light fluctuations of the positive column. The experimentally obtained spectra were decreasing from an optimum wave number k0 to the higher wave numbers as k-1.6.  相似文献   

2.
The known theory of stationary plane impact ionization waves in gases [U. Ebert et al., Phys. Rev. E 55, 1530 (1997)] has been generalized to the bipolar case characteristic of semiconductors, where a medium is ionized by hot charge carriers of both signs. In this case, the velocity u of bipolar waves (in contrast to monopolar waves) is determined by the processes in the leading region of the front at any nonzero impact ionization rates and for any propagation directions. This property makes it possible to derive analytical formulas for u as a function of material parameters, initial perturbation, and external field strength by analyzing a boundary value problem linearized near an unstable state. In the highest achievable fields (e.g., in streamers), diffusion must give rise to an increase in u by a factor of about 3 as compared to the average drift velocity at typical parameters of semiconductors.  相似文献   

3.
A numerical simulation of the origination and evolution of streamers in semiconductors has been performed using the diffusion-drift approximation including the impact and tunnel ionization. It is assumed that an external electric field E 0 is static and uniform, an avalanche and a streamer are axisymmetric, background electrons and holes are absent, and all their kinetic coefficients are identical. The linear evolution of an electron-hole avalanche, an avalanche-to-streamer transition, and two successive stages of the evolution of the streamer—intermediate “diffusion” and main exponentially self-similar—have been examined in detail. It has been shown that a streamer is similar to a dumbbell with conical weights. The bases of these cones, streamer fronts, are thin shells, which contain almost the entire streamer charge and are close in shape to the halves of ellipsoids of revolution. A front propagates so that its shape and the shape of the weight of the dumbbell, the maximum field on the front, and the electron-hole plasma density in weights remain unchanged. The field strength behind the front is much smaller than E 0, but increases with approaching the bar of the dumbbell whose diameter increases with the time t owing to the transverse diffusion. The electron and hole densities in the bar increase due to the impact ionization in an almost uniform field, which is only slightly lower than E 0. At the diffusion stage, the length of the streamer and the curvature radius of its front increase with constant rates, which are determined not only by the impact ionization and drift, but also by diffusion. In relatively low fields (E 0 ≲ 0.4 MV/cm for silicon) this stage ends due to the appearance of the instability of the front. In higher fields, the tunnel ionization is manifested before the appearance of instability and gives rise to the appearance of a new-type streamer. Its main feature is the stable exponential increase in all spatial scales with the same response time t R , so that the charge-carrier density and field strength at large times t depend only on one vector variable $ \hat R $ \hat R = Rexp(−t/t R ). This means that the solution of a Cauchy problem describing the evolution of the streamer in the uniform field is asymptotically exponentially self-similar.  相似文献   

4.
In this paper the response of a fluid loaded plane structure (a membrane) to a concentrated line force excitation is considered in great detail. The normalized velocity response—here called the Green function G—depends upon a dimensionless range x0=km|x|, where km is the free wavenumber on the membrane in a vacuum, on the Mach number M=k0km, the ratio of wave phase speed ω/km on the unloaded membrane to the sound speed ω/k0, and on a parameter ? which can be regarded as a measure of fluid loading at the “coincidence” condition M=1. In the analogous problem involving a thin elastic plate, the corresponding parameter is independent of frequency and plate thickness and may be regarded as an intrinsic measure of fluid loading; moreover, in cases of common interest (steel in water, aluminium in air) that parameter is small. In the present paper, the asymptotic structure of G(x0, M, ?) is therefore sought in the limit ? → 0. Naturally, no single asymptotic expansion can be expected to be valid throughout the (x0, M) plane, and the programme therefore involves the delineation of regions of that plane in which distinct asymptotic results apply, the construction and discussion of those results, and the asymptotic matching (according to the procedures of the method of matched asymptotic expansions) of results holding in adjoining regions. The Fourier integral for G is broken into surface wave and acoustic components, and the asymptotic structure obtained for each. Previously obtained results for the behaviour at large distances are recovered, with a demonstration that very large distances indeed (x0 ? ??2) may be needed for their validity for some ranges of M; and the drive point behaviour, of G(x0=0, M, ?) as ? → 0 qua function of M, is shown to correspond to that already discussed in the literature. Elsewhere, in the covering of the whole (x0, M) plane by different asymptotic expressions, a wide variety of analytical results is found, reflecting the achievement in different regions of different balances among the five competing physical mechanisms represented in the model: namely, structural stiffness, structural inertia, fluid pressures, fluid compressibility and fluid inertia. These different balances give rise to a wide variety of expressions for the phase and amplitude of the surface wave and acoustic components which can now be used to isolate the dominant structural and acoustic mechanisms at any point in the (x0, M) plane.  相似文献   

5.
6.
For a pulsed-laser excitation of various neon transitions (1sj → 2pk) in a glow discharge the population perturbations in the upper and lower levels are measured by emission and absorption spectroscopy, and the dynamical optogalvanic signals are observed. We propose that the population perturbation in the lower levels (1s2–1s5) as a whole is responsible for the optogalvanic signal, and that metastable-level populations determine its decay characteristics. The sign reversal of the optogalvanic signal that depends on the excitation condition is interpreted in this context.  相似文献   

7.
Modulation instability of dispersive electromagnetic waves propagating through a Josephson junction in a thin superconducting film is investigated in the framework of the nonlocal Josephson electrodynamics. A dispersion relation is found for the time increment of small perturbations of the amplitude. For dispersive waves, it is first established that spatial nonlocality suppresses the modulation instability in the range of perturbation wave vectors 0≤QQB1(k), i.e., in the long-wavelength range of experimental interest. The modulation instability range QB1(k)<Q<QB2(k, A, L) can be controlled (which is a unique possibility) by varying a dispersion parameter, namely, the wave vector k [or the frequency ω(k)] of linear-approximation waves. In the wave-vector ranges 0≤QQB1(k) and QQB2(k, A, L), waves are shown to be stable.  相似文献   

8.
Surface magnetic anisotropy energy was studied for (Gd0.26Co0.74)0.96Mo0.04 and (Gd0.29Co0.71)0.96Mo0.04 thin amorphous films by means of microwave spectroscopy at the X-band within the temperature range 4–295 K. Excitations of surface spin waves were observed in the spin wave resonance spectra. The experiment was performed in a rotating external magnetic field. The angular dependence of the resonance field for the uniform mode (spin wave vector k=0) and the surface mode made it possible to determine the surface uniaxial anisotropy constant Ks and its temperature dependence. An inhomogeneity of the saturation magnetization Ms within a close-to-surface layer of thickness d can generate the surface anisotropy energy with anisotropy constant Ks given by the formula: Ks=4πMbs (MbsMsurfs)d, where the indexes b and surf correspond to the bulk and surface values, respectively. The temperature dependence of Ks calculated by means of the formula agrees qualitatively with temperature dependence of Ks found in the experiment.  相似文献   

9.
The modulational instability of ion-acoustic waves in a collisionless plasma is studied taking into account the effect of ion temperature. It is found that the critical wavenumber is strongly dependent upon the ion temperature. In the limiting case of vanishing ion temperature, we recover the result that the modulational instability sets in fork>k c, where the critical wavenumber isk c=1.47.  相似文献   

10.
《Physics letters. A》1987,125(4):159-161
Following Manton, and Atiyah and Hitchin we consider approximating solutions to the dynamic Yang-Mills-Higgs equations by motions on the finite-dimensional space Mk of stable k-monopoles. For initial data transverse to Mk the approximate motion will not be geodesic motion but instead will be motion in an effective potential on Mk.  相似文献   

11.
The modification of the spectrum and damping of bulk plasma waves due to three-dimensional random inhomogeneities of the density of a degenerate electron gas in a conductor have been investigated using the averaged Green??s function method. The dependences of the frequency and damping of the averaged plasma waves, as well as the position ?? m and width ???? of the peak of the imaginary part of the Fourier trans-form of the averaged Green??s function, on the wave vector k have been determined in the self-consistent approximation, which makes it possible to take into account multiple scattering of plasma waves by inhomogeneities. It has been found that, in the long-wavelength region of the spectrum, the decrease revealed in the frequency of the plasma waves is caused by the inhomogeneities, which agrees qualitatively with the behavior of the position of the peak ?? m . In the range of large values of the correlation length of inhomogeneities and small values of k, the damping of the plasma waves tends to zero, whereas the width of the peak ???? remains finite, which is due to the nonuniform broadening. A comparison with the data of numerical calculations has been performed.  相似文献   

12.
The dynamics of the quasi-monochromatic surface gravitational waves in a finite-depth fluid is studied for the case where the product of the wavenumber by the depth of the fluid is close to the critical value k cr h ≈ 1.363. Within the framework of the Hamiltonian formalism, the general nonlinear Schrödinger equation is derived. In contrast to the classical nonlinear Schrödinger equation, this equation involves the gradient terms to the four-wave interaction, as well as the six-wave interaction. This equation is used to analyze the modulation instability of the monochromatic waves, as well as the bifurcations of the soliton solutions and their stability. It is shown that the solitons are stable and unstable to finite perturbations for focusing and defocusing nonlinearities, respectively.  相似文献   

13.
A stochastic approach based on four-dimensional Langevin fission dynamics is applied to calculating mass-energy distributions of fragments originating from the fission of excited compound nuclei. In the model under investigation, the coordinate K representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of the {c, h, ??} parametrization. The evolution of the orientation degree of freedom (K mode) is described by means of the Langevin equation in the overdamped regime. The tensor of friction is calculated under the assumption of the reducedmechanismof one-body dissipation in the wall-plus-window model. The calculations are performed for two values of the coefficient that takes into account the reduction of the contribution from the wall formula: k s = 0.25 and k s = 1.0. Calculations with a modified wall-plus-window formula are also performed, and the quantity measuring the degree to which the single-particle motion of nucleons within the nuclear system being considered is chaotic is used for k s in this calculation. Fusion-fission reactions leading to the production of compound nuclei are considered for values of the parameter Z 2/A in the range between 21 and 44. So wide a range is chosen in order to perform a comparative analysis not only for heavy but also for light compound nuclei in the vicinity of the Businaro-Gallone point. For all of the reactions considered in the present study, the calculations performed within four-dimensional Langevin dynamics faithfully reproduce mass-energy and mass distributions obtained experimentally. The inclusion of the K mode in the Langevin equation leads to an increase in the variances of mass and energy distributions in relation to what one obtains from three-dimensional Langevin calculations. The results of the calculations where one associates k s with the measure of chaoticity in the single-particle motion of nucleons within the nuclear system under study are in good agreement for variances of mass distributions. The results of calculations for the correlations between the prescission neutron multiplicity and the fission-fragment mass, ??n pre(M)??, and between, this multiplicity and the kinetic energy of fission fragments, ??n pre(E k )??, are also presented.  相似文献   

14.
The new physics (NP) is parametrized with four model-independent quantities: the magnitudes and phases of the dispersive part M 12 and the absorptive part ??12 of the NP contribution to the effective Hamiltonian. We constrain these parameters using the four observables ??M s, ????s, the mixing phase $\beta_\mathrm{s}^{J/\psi\phi}$ and $A^b_{\rm sl}$ . This formalism is extended to include charge-parity-time reversal (CPT) violation, and it is shown that CPT violation by itself, or even in the presence of CPT-conserving NP without an absorptive part, helps only marginally in the simultaneous resolution of these anomalies.  相似文献   

15.
The formation of rogue waves in sea states with two close spectral maxima near the wave vectors k 0 ± Δk/2 in the Fourier plane is studied through numerical simulations using a completely nonlinear model for long-crested surface waves [24]. Depending on the angle θ between the vectors k 0 and Δk, which specifies a typical orientation of the interference stripes in the physical plane, the emerging extreme waves have a different spatial structure. If θ ≲ arctan(1/√2), then typical giant waves are relatively long fragments of essentially two-dimensional ridges separated by wide valleys and composed of alternating oblique crests and troughs. For nearly perpendicular vectors k 0 and Δk, the interference minima develop into coherent structures similar to the dark solitons of the defocusing nonlinear Schroedinger equation and a two-dimensional killer wave looks much like a one-dimensional giant wave bounded in the transverse direction by two such dark solitons.  相似文献   

16.
This paper presents an investigation of stimulated Raman scattering of an extraordinary mode in a solid state plasma, n In Sb. As the pump wave (w0, k0) propagates in the semiconductor the electrons acquire an oscillatory drift velocity and the magnetic field of the pump interacts with a low frequency perturbation (wl, kl) to give rise to high frequency side bands (wl ± w0, kl ± k0). The side band (wlw0, klk0) interacts with the pump to produce a low frequency ponderomotive force responsible for driving the original density perturbation. The expressions for the growth rate and threshold for the instability have been obtained. For typical plasma parameters of n In Sb and laser radiation of frequency 1.778 × 1014s−1, the growth rate turns out to be ~ 1011s−1 for the scattering angle θ = 0°. The growth rate is found to reduce with increasing values of scattering angle. A magnetic field enhances the growth rate and tends to reduce the threshold for the instability. The present investigation may be used to obtain useful information about the nature of elementary excitations in solid state plasmas, and the estimate of the growth rate may help in diagnostics and in the characterization of semiconductors.  相似文献   

17.
Dynamics of regular polygonal shock waves (SWs), generated at thin wire explosion, with a closed surface front and numbers of sides n = 3, 4, 5, 6, 8, 10, 12, and 16 in the plane of polygons is experimentally studied. Depending on the initial Mach number M PSW0 of such waves and the number n, two convergence modes are implemented: convergence with and without changes in the number of sides n. It is shown that the shape of the reflected wave front differs from the shape of the converging SW front for polygonal SWs with n ≥ 8, i.e., it becomes smooth. The number M PSW0 is determined depending on initial characteristics of an SW generator and gas. A significant amplification of such SWs with n ≥ 12 is observed near to the center of polygons; their maximum amplification is estimated.  相似文献   

18.
A complete set of elastic, piezoelectric and dielectric constants of ZnO and CdS at room temperature was determined by the method of resonance-antiresonance. Elastic constants sE11, sE12, sE55, cD33, cD55, coefficients of electromechanical couplingk31, k15, kt and dielectric constants εT11, εT33 of ZnO single crystals were determined in the temperature range 4.2–800 K. Elastic constants sE11, sE12, sD33, sE55, sD33, sD55, coefficients of electromechanical coupling k31, k33, k15, kt and dielectric constants εT11, εT33 of CdS single crystals were determined in the temperature range 4.2–300 K.  相似文献   

19.
Parametric traveling-wave interactions are calculated with the aid of a plane wave approximation, considering the 4 frequencies ω s , ω p , ω I p s and ω Σ p s . Special attention is paid to the case where ω p s . Competition between parametric amplification and upconversion is studied as a function of phase matching and the results are illustrated by means of numerical examples. It is shown that parametric gain disappears if the linear combination of wave vectors, 2k p-kI-kΣ, vanishes. In this situation upconversion with power gain up to about (ω Σ s )2 is possible. It is concluded that fork p?ks the sum frequency ω Σ can significantly influence parametric forward amplification but does not affect backward wave amplification.  相似文献   

20.
The dispersion of photon density waves in strongly scattering media with different widths of the scattering indicatrix is studied by the spherical harmonics method using approximations of various orders (up to the P 7 approximation inclusive). It is shown that, beginning from the P 3 approximation, the reduction in the velocity of photon density waves that is characteristic of the P 1 approximation is eliminated and, independently of the width of the scattering indicatrix in the region of modulation frequencies exceeding 1010 Hz, the velocity of photon density waves asymptotically approaches the speed of light. Our study of the damping of photon density waves has shown that the formula obtained previously for the calculation of the damping coefficient (Imk s , ω)) as a function of the transport scattering coefficient and the velocity is valid at Imk ≤ μss is the light scattering coefficient). The maximum growth in the damping coefficient of photon density waves with a further increase in the frequency is limited by the value of the light scattering coefficient Imk max ≈ μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号