首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the first measurement of the dielectric permittivity and heat capacity of a KDP crystal doped by Chicago Sky Blue organic dye within a temperature interval including the ferroelectric phase transition at T c =122 K. Similar measurements were made on a pure KDP crystal under the same conditions for the sake of comparison. The heat capacities of the pure and doped crystals were shown to differ substantially within an interval 1 K wide in the vicinity of T c , where an anomaly in the heat capacity of the doped crystal was observed to wash out without producing any change in the temperature position of its maximum. The doping reduces the permittivity in the polar phase markedly. The observed effects are associated with the influence of nonisomorphic defects on the ferroelectric phase transition in a piezoelectric crystal.  相似文献   

2.
The spin-lattice relaxation of X-irradiated ferroelectric KDA has been investigated by means of the electron spin-echo method in the range between 2 and 200 K. In the vicinity of the phase transition point an anomalous increase of T1 has been observed. This effect could not be detected for KDA-KDP mixed crystals with a high concentration of KDP. The anomaly of the spin-lattice relaxation at the phase transition is explained by the increased damping of the “hard” optical mode which governs the relaxation behaviour at this temperature region.  相似文献   

3.
A shell model for KH2PO4 (KDP), the prototype compound of the family of H-bonded ferroelectric materials, has been constructed by adjusting the interaction parameters to first-principles calculations. Structural properties, energy barriers, phonons, and the relative stability between the ferroelectric (FE) phase and a relevant antiferroelectric metastable structure associated to domain walls, compare very favorably to available first-principles and experimental data. Molecular dynamics simulations show that the model behaves satisfactorily within the FE phase. This model will be used to study the elusive structure of the paraelectric (PE) phase and the nature of the FE–PE phase transition.  相似文献   

4.
A nanocomposite chrysotile-KDP (KH2PO4) was prepared. KDP was introduced into empty nanochannels of chrysotile asbestos with diameters of ~5 nm. Thermal conductivity κ and heat capacity at a constant pressure C p of the samples of chrysotile asbestos and nanocomposite chrysotile asbestos-KDP were measured in a temperature range of 80–300 K. Based on the analysis of the behavior of temperature dependences κ(T) and C p (T) of the composite, temperatures of the ferroelectric transition T F for KDP in nanochannels of chrysotile asbestos were determined. It turned out to be equal to ~250 K at T F ~ 122 K for massive KDP samples.  相似文献   

5.
The main regularities revealed for the dynamic response in recent Raman spectroscopic investigations of ferroelectric crystals of the displacive type (LiNbO3, LiTaO3) and the order-disorder type (KDP, DKDP) are discussed. The characteristic feature of the dynamic response for all the crystals (KDP, DKDP, LiNbO3, LiTaO3) under investigation in the vicinity of the phase transition temperature is an intense central peak that follows from the theoretical predictions for the order-disorder phase transition. The possible factors responsible for the central peak, the character of the behavior of this peak outside the aforementioned temperature range, and the specific features of the behavior of the width and intensity of the central peak over a wide range of temperatures for order-disorder crystals are analyzed.  相似文献   

6.
The elastic, inelastic, and dielectric properties of the magnetoelectric composite xPbZr0.53Ti0.47O3-(1 ? x)Mn0.4Zn0.6Fe2O4 (PZT-MZF) are studied in the temperature range from room temperature to 673 K. The influence of the ferroelectric PZT phase on the magnetic phase transition and the magnetic MZF phase on the ferroelectric phase transition is revealed. It is established that, as the PZT content increases, the degree of diffuseness of the phase transition decreases and a gradual crossover from a pronounced relaxor behavior to a more ordered ferroelectric behavior occurs.  相似文献   

7.
The drastic broadening of a few A1 Raman lines of ferroelectric KH2PO4(KDP) and KH2AsO4(KDA) crystals have been measured at various temperatures near Tc. The results in KDP are in fair agreement with two different simplified expressions of linewidths, which are based on pseudospin-phonon interaction arguments. No such agreement is found between the results and a simplified linewidth expression derived from a theory based on soft mode-hard mode interaction arguments. The linewidths and the reciprocal of the proton spin-lattice relaxation time in KDP exhibit a very similar temperature dependence below Tc but behave differently above Tc. This phenomena is presented in detail, and discussed.  相似文献   

8.
Low temperature polarized Raman scattering measurements of KDP:Mn (0.9% weight of Mn) were performed at temperatures ranging from 14 to 300 K, over the spectral range 50–1250 cm−1. In the present results we can see that the spectra of undoped and doped samples at room temperature are very different. Doped samples maintain the KDP structure as tetragonal, with the same factor group D2d but with a different class of the space group, different from the original 12. The results show that the crystal undergoes a phase transition at temperature between 115 and 97 K, which is much lower than the phase transition temperature of undoped KDP that occurs at 122 K, where the crystal changes from the para‐electric to the ferroelectric phase. Further, at very low temperature (14 K) we can see that the spectra of KDP:Mn (0.9% weight of Mn) present a behavior very different from the behavior presented by the spectra of KDP doped with low Mn concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
G P Singh  B K Basu 《Pramana》1978,11(2):119-134
Ferroelectric phase transition in RbH2PO4 has been investigated using propagation of longitudinal acoustic waves along the polar axis near the transition temperature. The velocity of this mode is continuous across the transition temperature. Velocity data in the ferroelectric phase are analyzed in terms of coupled soft modeacoustic mode model of Pytte to obtain the temperature dependence of the soft mode frequency. The attenuation data in the ferroelectric phase show power law dependence. It follows scaling behaviour of the type predicted by Kawasaki from the mode-mode coupling theory and the dynamical scaling.  相似文献   

10.
The crystal structure of paraelectric CsH2PO4 at room temperature is presented. As suggested by the strong deuteration-dependence of the transition temperature and the distribution of quasielastic scattering, one of the hydrogen bonds is found to be very probably (97.5%) disordered, with H-H=0.48(4)Å. This work is set in the context of the interest now being shown in the group of monoclinic dihydrogen phosphates-deuterated KDP, NaDP, the ferroelectric CsDP and the presumed ferroelectric T1DP (DP denotes H2PO4). Recent work on these other compounds is surveyed briefly.  相似文献   

11.
The hydrostatic pressure effect on the dielectric properties of (NH4)2H2P2O6 ferroelectric crystal was studied for pressures from 0.1 MPa to 360 MPa and for temperatures from 100 to 190 K. The pressure–temperature phase diagram obtained is linear with increasing pressure. The paraelectric–ferroelectric phase transition temperature decreases with increasing pressure with the pressure coefficient dTc/dp=?5.16×10?2 K MPa?1. Additionally, the pressure dependences of Curie–Weiss constants for the crystal in paraelectric (C+) and ferroelectric (C?) phases are evaluated and discussed. The possible mechanism of paraelectric–ferroelectric phase transition is also discussed.  相似文献   

12.
X-band electron paramagnetic resonance (EPR) investigations of single crystals of Cr3+-doped dimethylammonium aluminium sulphate hexahydrate are presented from 100 K to room temperature. The crystal undergoes a phase transition at 152 K from the ferroelastic to the ferroelectric phase. The spin-Hamiltonian parameters have been determined for both phases. The spin-Hamiltonian parameters in the ferroelectric phase are:g=1.980±0.003,b 2 0 =(1140±15)·10?4 cm?1,b 2 2 =(214±10)·10?4 cm?1. Remarkable EPR line width changes confirm the order-disorder character of the ferroelectric phase transition on a microscopic level and demonstrate that the dimethylammonium reorientation freezing-out is the prime reason for this transition.  相似文献   

13.
The modified strong dipole-proton coupling (MSDPC) model, which predicts several static and dynamic dielectric properties of KDP-type ferroelectrics, is used to investigate the properties of the paramagnetic center SeO 4 3? introduced in the KH2PO4 (KDP) and KD2PO4 (DKDP) lattice as a local probe in an electron paramagnetic resonance experiment. Paramagnetic center is treated within the MSDPC model as a soft impurity, with anA probe value of the elastic constant for the dipolec-component induction lower than theA value for the original PO 4 3? group. ForA probe=0.45A, the molecular dynamics simulations in the paraelectric phase of KDP and DKDP show the effective local double-well potential of the probe, and the temperature dependence of the calculated correlation time τ for the dipole reorientational jumps over the barrier can be fitted by the Arrhenius law. The obtained Arrhenius parameters for KDP are close to the experimental ones, and the experimentally detected higher activation energy in DKDP is reproduced. Also, the high-temperature line broadening and the temperature dependence of the77Se hyperfine coupling observed in experiment are discussed within the MSDPC model.  相似文献   

14.
We have used synchrotron X-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline KH2PO4 (KDP) upon heating within the 30-250 °C temperature interval. Our data show evidence of a polymorphic transition at T∼190 °C from the room-temperature tetragonal KDP phase to a new intermediate-temperature monoclinic KDP modification (spacegroup P21/m and lattice parameters a=7.590, b=6.209, c=4.530 Å, and β=107.36°). The monoclinic RDP polymorph remains stable upon further heating to 235 °C, and is isomorphic to its RbH2PO4 and CsH2PO4 counterparts.  相似文献   

15.
It is found that the ferroelectric phase transition in the ammonium sulphate crystal (NH4)2SO4 at T C=223 K is accompanied by spontaneous twisting of samples around the a, b, and c crystallographic axes in the ferroelectric phase. This twisting, observed with a torsion pendulum, cannot be explained solely by the change in symmetry mmmmm2 at the Curie point. It is supposed that the twisting is connected with a complex rearrangement of the structural elements of the crystalline lattice below the Curie temperature.  相似文献   

16.
The effect of hydrostatic pressure on the ferroelectric phase transition temperature in [NH2(CH3)2]3[Sb2Cl9] (DMACA) has been studied by electric permittivity measurements at pressures up to 400 MPa. The pressure-temperature phase diagram is given. The phase transition temperature (Tc) increases with increasing pressure up to 150 MPa, passes through a maximum and then decreases with a further increase of pressure. The unexpected nonlinear decrease in Tc with pressure increasing above 150 MPa suggests that the mechanism of ferroelectric phase transition in DMACA is different from hitherto assumed.  相似文献   

17.
The heat capacity of [NH2(CH3)2]2 · CuCl4 crystals prior to and after γ-irradiation with doses of 1, 5, 10, and 50 MR is measured by the calorimetric method in the temperature range 80–300 K. It is found that, as the temperature decreases, the temperature dependence C p (T) exhibits two anomalies which correspond to phase transitions from the incommensurate to the ferroelectric phase at T c =281 K and from the ferroelectric to the ferroelastic phase at T 1=255 K. The nature of the anomalies is typical of a first-order phase transition. In addition, a smeared anomaly in the form of a small increase in the heat capacity of the ferroelectric phase is observed at T≈275 K. It is demonstrated that when the dose of γ-irradiation increases, the anomalies decrease in magnitude and the phase transition temperatures are displaced: T c increases and T 1 decreases.  相似文献   

18.
The infrared reflectivity of Cd2Nb2O7 single crystal was studied in the temperature interval of 10-540 K, together with complementary dielectric measurements. A ferroelectric soft mode was revealed above the ferroelectric phase transition at T c = 196 K coupled with a central-mode type dispersion in the near-millimetre range. This proves the mixed displacive and order-disorder nature of the transition. Below T c many new modes were detected due to lowering of the symmetry, especially below the previously suggested incommensurate transition at 85 K. Discussion of the possible phase transitions based on symmetry considerations is presented with the conclusion that the ferroelectric transition is proper with the F1u symmetry of the order parameter, whereas the intermediate ferroelastic transition is improper and triggered by the coupling with the ferroelectric order parameter. Received 17 July 2000  相似文献   

19.
Phase transition has been found in (NH4)2ZnCl4 at T = 266 ± 0.5 K by NQR method. There is a ferroelectric phase below Tc with a space group P21cn and with the trebling of the elementary lattice parameter along the axis c. Above the phase transition temperature in the crystal (NH4)2ZnCl4 an incommensurate phase is realized.  相似文献   

20.
A new model is proposed for a local transition in a Jahn-Teller impurity center in a crystal with a ferroelastic (ferroelectric) phase transition. This model is based on direct interaction of the order parameter of the phase transition in the matrix with the Jahn-Teller impurity degrees of freedom. It is shown that, under these conditions, the order parameter field can induce lifting of degeneracy of the electronic states active in the Jahn-Teller effect, which is accompanied by a transition from the Jahn-Teller effect to the pseudo-Jahn-Teller effect with its subsequent suppression. As a result, a decrease in temperature gives rise to a structural local transition in the region of the low-symmetry ferroelastic (ferroelectric) matrix phase from the many-well local adiabatic to a single-well potential. The model proposed allows interpretation of experimental data obtained in an EPR study of the molecular impurity ion MnO 4 2? in the K3Na(CrO4)2 ferroelastic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号