首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
First-principles calculation based on density-functional theory in the pseudo-potential approach have been performed for the total energy and crystal structure of BaTaO2N. The calculations indicate a random occupation of the anionic positions by O and N in a cubic structure, in agreement with neutron diffraction measurements and infrared spectra. The local symmetry in the crystal is broken, maintaining a space group Pm3?m, as used in structure refinement, which represents only the statistically averaged result. The calculations also indicate displacive disordering in the crystal. The average Ta-N distance is smaller (2.003 Å), while the average Ta-O distance becomes larger (2.089 Å). The local relaxation of the atoms has an influence on the electronic structure, especially on the energy gap. BaTaO2N is calculated to be a semiconductor with an energy gap of about 0.5 eV. The upper part of the valence band is dominated by N 2p states, while O 2p states are mainly in the lower part. The conduction band is dominated by Ta 5d states.  相似文献   

2.
The properties of silver-silicon interfaces formed by cleaving n-type silicon in ultra high vacuum (UHV) in a stream of evaporating silver atoms were studied. The barrier heights of these contacts were measured at different temperatures by using C-V techniques. All measurements were performed in UHV. The dependence of the barrier height upon temperature did not follow the temperature dependence of the Si band gap as it is usually found. The measured temperature behavior depended on the roughness of the Si surface. The temperature behavior can be explained by assuming a specific band structure of the interface states. For Ag contacts on atomically smooth n-type Si, the interface states were found to be arranged in two bands, one band 4 × 10?3 eV wide with acceptor type states 0.18 eV below the intrinsic level Ei and a density of 1017 states/cm2 eV, and the other 1 eV wide with donor type states with its upper edge 0.28 eV below Ei, and a density of 4 × 1014 states/cm2eV.  相似文献   

3.
Electron states located near a (110) surface of a Na crystal are investigated by the method of matching the crystal wave function to the outside solution at the surface. The lower energetic states are in the fundamental state. An “anormal” optical band situated about 1.8 eV is discussed when the imaginary part of the dielectric function ?2 has been determinated considering transitions with the k-vector component parallel to the surface.  相似文献   

4.
Oxidation of the Al(111) surface is a two-stage process in which the formation of an ordered oxygen overlayer precedes the creation of a bulk-like amorphous oxide. An electronic structure calculation is reported here for the clean and oxygen-covered Al(111) surface and for bulk A12O3. The calculation uses an atomic-orbital basis and the metal surface is modelled by an infinite two-dimensional crystal, containing seven layers of aluminium atoms. Oxygen atoms occupy three-fold sites, with an Al-O separation of 1.9 Å. The oxygen 2p resonance in the (1 × 1) chemisorbed overlayer is about 3 eV wide, compared to 1.9 eV for an equivalent isolated layer of oxygen atoms unhybridized with the metal. The valence band of A12O3 is about 1.5 eV wider than the chemisorbed oxygen resonance, but in both cases most of the states are concentrated in the top 1.5 eV of the band. The results are related to available ultraviolet photoemission spectra, including the recent angular-resolved spectra of Martinson and Flodström.  相似文献   

5.
Valence states of single crystal titatium carbide (TiCx, X?0.88) have been studied with photon energies ranging from far ultraviolet (u.v.) to soft X-ray. The valence band consists of two peaks located at 3 and 10 eV below the Fermi level. This is in good agreement with recent APW band structure calculations that predict a strong hybridization of the Ti 3d and C 2p bands and a C 2s band at lower energy.  相似文献   

6.
The total density of occupied states in the valence band of CoO and Co3O4 is determined by XPS and UPS. From variations of excitation probability of the bands, the 4 e V wide O2p band is shown to be located around 5 eV for both oxides, while structures obtained from photoionisation of the localized 3d band spread over 10 eV range below the Fermi level overlapping with O2p band. The 3d peaks located at binding energy <3 eV correspond to the calculated energy of the dn ?1 manifold final state in the octahedral and tetrahedral crystal field of CoO and Co3O4. The 3d levels at higher binding energy are shown to occur from configuration interaction in both final and initial states. These last peaks are higher in intensity for CoO relative to Co3O4. A superior limit for the width of the 3d initial band in a one electron energy diagram is given to be <3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV from shake-up and Auger energy confirms the Mott insulator nature of CoO.  相似文献   

7.
Under generalized gradient approximation (GGA), the structural and electronic properties of AlN and Si sheets, hydrogen terminated AlN and Si nanoribbons with hexagonal morphology and 2, 4, 6 zigzag chains across the ribbon width and the hexagonally bonded heterosheets AlNSix (x=2, 4, and 6) consisting of hexagonal networks of AlN (h-AlN) strips and silicene sheets with zigzag shaped borders have been investigated using the first-principles projector-augmented wave (PAW) formalism within the density function theory (DFT) framework. The AlN sheet is an indirect semiconductor with a band gap of 2.56 eV, while the Si sheet has a metallic character since the lowest unoccupied conduction band (LUCB) and the highest occupied valence band (HOVB) meet at one k point from Γ to Z. In the semiconductor 6-ZAlNNR, for example, the states of LUCB and HOVB at zone boundary Z are edge states whose charges are localized at edge Al and N atoms, respectively. In metallic 6-ZSiNR, a flat edge state is formed at the Fermi level EF near the zone boundary Z because its charges are localized at edge Si atoms. The hybridizations between the edge states of h-AlN strips and silicene sheets result in the appearance of border states in the zigzag borders of heterosheets AlNSix whose charges are localized at two atoms of the borders with either bonding or antibonding π character.  相似文献   

8.
The electron distribution in the valence band from single crystals of titanium carbide has been studied by photoelectron spectroscopy with photon energies h?ω = 16.8, 21.2, 40.8 and 1486.6 eV. The most conspicious feature of the electron distribution curves for TiC is a hybridization between the titanium 3d and carbon 2p states at ca. 3–4-eV binding energy, and a single carbon 2s band at ca. 10 eV. By taking into account the strong symmetry and energy dependence of the photoionization crosssections, as well as the surface sensitivity, we have identified strong emission from a carbon 2p band at ? 2.9-eV energy. Our results are compared with several recent energy band structure calculations and other experimental data. Results from pure titanium, which have been used for reference purposes, are also presented.The valence band from single crystals of titanium carbide have been studied by means of photoelectron spectroscopy, with photon energies ranging from 16.8 to 1486.6 eV.By taking into account effects such as the symmetry and energy dependence of the photoionization cross-sections and surface sensitivity, we have found the valence band of titanium carbide to consist of two peaks. The upper part of the valence band at 3–4 eV below the Fermi level consists of a hybridization between Ti 3d and C 2p states. The C 2p states observed in our spectra were mainly excited from a band about 2.9 eV below the Fermi level. The APW5–9, MAPW10 and EPM11 band structure calculations predict a flat band of p-character between the symmetry points X4 and K3, most likely responsible for the majority of C 2p excitations observed. The C 2s states, on the other hand, form a single band centered around ?10.4 eV.The results obtained are consistent with several recent energy band structure calculations5–11, 13 that predict a combined bonding of covalent, ionic and metallic nature.  相似文献   

9.
The rumpled relaxation and the core-level shift of full-relaxed BaTiO3 (0 0 1) surface have been investigated by first-principles calculation. Based on the work function and the electric-field gradient, the right size of vacuum and the slab have been evaluated. The large displacements of ions deviated from their crystalline sites to lead to the formation of the surface rumples have been found. Some fully occupied surface oxygen p states at the top M point of the valance band and the empty surface titanium d states at the edge of the bulk conduction band are observed on the TiO2-terminated surface. In contrast, on the BaO-terminated surface, two different core levels of the Ba 5p states shifted about 1.29 eV are induced by the bulk perovskite Ba atoms and the relaxation of surface Ba atoms, respectively. Our calculations are consistent with the experimental data.  相似文献   

10.
The (010) surface of single crystal MoO3 has been prepared and examined using LEED, XPS, UPS, and ELS. Three methods yield the stoichiometric surface: scraping in UHV and annealing, ion etching followed by reoxidation (770 K, 102 Pa O2), or oxygen treatment to remove carbon contamination. LEED shows the surface periodicity is the same as that of the bulk (010). The MoO3 valence band is 7 eV wide with density of states maxima at 1.5, 3.6, and 5.6 eV below the top of the valence band. Heating MoO3 in vacuum reduces the surface region. XPS indicates the O/Mo atomic ratio decreases to 2.85 ± 0.12 on heating to 600 K. Ar ion bombardment disorders the surface and reduces the surface O/Mo atomic ratio to 1.6. Annealing of reduced surfaces at > 770 K incompletely reoxidizes them by diffusion of oxygen from the bulk. UPS of reduced and annealed MoO3 exhibits two new emission features in the bandgap at 0.9 and 2.0 eV above the top of the valence band. These features originate from Mo derived states of a defect involving two or more Mo atoms, such as crystallographic shear planes. Because of the insulating nature of MoO3, surface charging and electron beam induced damage were substantial hindrances to electron spectroscopic examination.  相似文献   

11.
In this paper we present the results of photoemission studies (XPS and UPS) performed on a polycrystalline surface of PdO. The electron density of states (EDOS) deduced both from XPS and UPS (HeI and HeII) are very similar. The valence band of PdO, which differs significantly from the Pd one, can be built up by four structures located at 0.5 eV, 2.2eV, 4.5 eV and 6.5 eV below EF. The various electronic contributions (p or d) in the band are considered and, in order to explain our spectra, we discuss several hypothesis taking into account the possible existence of satellite lines or crystal field effects. Our XPS and UPS spectra show that the energy bands of PdO are narrow (~ 2–3 eV), moreover the energy shift of the core levels (|ΔEFB| = 2 eV) is important : these results suggest that the correlations between the d electrons may be important in PdO.  相似文献   

12.
Auger lineshapes of the Ge M1M4,5V and M3M4,5V and Se M1M4,5V transitions in GeS (001) and GeSe (001) are measured and compared to XPS valence band spectra. Distortions in both types of spectra due to inelastic scattering, analyzer and source broadening, and core level lifetime broadening are removed by deconvolution techniques. The valence band consists of three main peaks at ?2 eV, ?8 eV, and ?13 eV. There is excellent agreement of peak positions in AES and XPS spectra. The Auger lineshapes can be interpreted in terms of site-specific densities of states. They indicate that the states at ~?8 eV and at ~?13 eV are associated with the cation and anion sites respectively. The bonding p-like states at the top of the valence band have both cation and anion character. The Auger lineshapes indicate that the states closest to the valence band maximum are preferentially associated with Ge.  相似文献   

13.
UV photoemission spectra of valence electrons in small silver clusters have been compared with spectra from bulk silver samples using synchrotron radiation, 16 << 27 eV. Spectra for single silver atoms supported on carbon are indicative of a completely filled 4d10 initial state configuration. With increased cluster size, both density of states and valence band modulations with respect to photon energy resemble the bulk metal more closely. Spectral modulation, characteristic of conservation of crystal momentum, appears to require a cluster consisting of ~150 atoms.  相似文献   

14.
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to ?0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.  相似文献   

15.
We report on the first principle density functional calculation of the charge transition levels of native defects (vacancies and interstitials) in CaF2 structure. The transition level was defined as the Fermi level where two charge states of given defect have the same formation energy. The common error in the band gap inherited to semiclocal density functional has been accounted for by incorporating the hybrid density functional method, leading to correct placement of the transition levels within the band gap. The band gap size from hybrid calculation has been validated using the full potential, Linearized Augmented Planewave method with the Modified-Becke-Johnson exchange potential. Prior to level calculations, we ensured that an agreement between the formation energies from small (95–97 atoms) and large (323–325 atoms) supercells was achieved after applying the Makov-Payne correction method. Our calculated transition level for the anion vacancy was 2.97 eV below the conduction band, agreeing with the experimental optical absorption band at 3.3 eV associated with the electron transition from the ground state F-center to the conduction band in CaF2.  相似文献   

16.
The electronic band structure of the chalcogenide spinels In2S3 and CdIn2S4 has been studied using the FEFF8 program. It is shown that the valence band top is formed by the S p states mixed with the In s and In p states for In2S3 or with the Cd s, Cd p, In s, and In p states for CdIn2S4. Compared to In2S3, the presence of Cd atoms in the nearest environment of S atoms in CdIn2S4 does not considerably affect the electronic band structure. In CdIn2S4 the Cd 4d states, as well as the In 4d states, form a narrow localized band shifted deep into the valence band. The theoretical results are in good agreement with the experimental x-ray photoelectron and x-ray spectra.  相似文献   

17.
Ultrasoft x-ray spectroscopy methods have been used to observed a change in the energy distribution of the silicon valence states after annealing a-Si:H films at 500 °C. This change appears as three distinct maxima in the density of states 3.5, 7.2, and 10.2 eV above the top of the valence band, which indicates ordering of the a-Si:H structural network. The energy distance between the latter two maxima (E?E v=7.2 and 10.2 eV) supports electron-diffraction data indicating a decrease in the silicon-silicon interatomic distance by 0.2 Å in comparison with the crystal. The presence of a third maximum (E?E v=3.5 eV) is connected with the change in the hybridization of the s-p-functions of silicon with decrease of the coordination number.  相似文献   

18.
UV photoemission spectroscopy (UPS) experiments have been carried out on the layer compound ZnIn2S4 employing several different photon energies in the range h?ω = 9.5?21.2 eV. The energy distribution curves (EDC's) exhibit four valence band density of states structures besides the Zn 3d peak. These five peaks appear 0.90 eV, 1.6 eV, 4.3 eV, 5.8 eV and 8.7 eV respectively below the top of the valence band, Ev. The atomic orbital character of the shallowest peak A appears different from that of the three deeper valence band peaks B, C and D and this is discussed in terms of the more or less pronounced ionic character of the intralayer chemical bonds. These results demonstrate that an overall understanding of the electronic states in complex structures can be achieved by an approach based on photoemission experiments and chemical bonding considerations which has been widely used in the past to study simple binary layer compounds.  相似文献   

19.
The methodology of characterizing electronic structure in dielectric materials will be presented in detail. Energy distribution of the electrons emitted from dielectric materials by the Auger neutralization of ions is measured and rescaled for Auger self-convolution, which is restructured from the energy distribution of the emitted electrons. The Fourier transform is very effective for obtaining the density of states from the Auger self-convolution. The MgO layer is tested as an example of this new measurement scheme. The density of states in the valence band of the MgO layer is studied by measuring the energy distribution of the emitted electrons for MgO crystal with three different orientations of (111), (100) and (110). The characteristic energy of ?0 corresponding to the peak density of the states in the band is determined, showing that the (111) orientation has a shallow characteristic energy ?0 = 7.4 eV, whereas the (110) orientation has a deep characteristic energy ?0 = 9.6 eV, consistent with the observed coefficient γ of the secondary electron emission for MgO crystal. Electronic structure in new functional nano-films spayed over MgO layer is also characterized. It is therefore demonstrated that secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials. This method simultaneously determines the valence band structure and the coefficient γ of the secondary electron emission, which plays the most important role in the electrical breakdown phenomena.  相似文献   

20.
The structural stability, electronic structure, optical and thermodynamic properties of NaMgH3 have been investigated using the density functional theory. Good agreement is obtained for the bulk crystal structure using both the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. It is found from the electronic density of states (DOS) that the valence band is dominated by the hydrogen atoms while the conduction band is dominated by Na and Mg empty states. Also, the DOS reveals that NaMgH3 is a large gap insulator with direct band gap 3.4 eV. We have investigated the optical response of NaMgH3 in partial band to band contributions and the theoretical optical spectrum is presented and discussed in this study. Optical response calculation suggests that the imaginary part of dielectric function spectra is assigned to be the interband transition. The formation energy for NaMgH3 is investigated along different reaction pathways. We compare and discuss our result with the measured and calculated enthalpies of formation found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号