首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

2.
霍新霞  王畅  张秀梅  王利光 《物理学报》2010,59(7):4955-4960
采用基于密度泛函理论(DFT)和非平衡格林函数(NEGF)的第一性原理方法对富勒烯C32分子及在C32分子的距离最远的两个碳原子处连接Au(1,1,1)电极的分子器件进行了电子结构和电子输运性质的研究.考虑到中间分子与Au电极间距离变化的情况,通过计算得出了在不同距离下分子器件的电子传输谱和I-V特性,分析了各器件的电子结构和电子输运特性产生的原因,并分析了电极与中间分子的连接距离及门电压对分子器件电子输运的影响.得出了电极与所连接的中间分子之  相似文献   

3.
The electronic and optical properties of AgAlO2 were determined by using Generalized Gradient Approximation (GGA) suggested by Perdew–Burke–Ernzerhof (PBE) with the addition of Hubbard potential along with linearized augmented plane wave pseudopotential. Our computed band structure infers that our calculated bandgap (1.5?eV) is closer to the experimental (2.81?eV) as compare to the previous theoretical values (1.16?eV). The investigated band structure also reflects that AgAlO2 is an indirect semiconductor material. The investigated atomic positions and lattice constants are in good agreement with the experimental values than the earlier theoretical values. From presented optical properties one can observe that AgAlO2 is a good conducting material. The absorption spectrum infers that AgAlO2 is an expensive material for photo-electronic devices or solar-cell applications.  相似文献   

4.
The electronic structure of the semiconductor solid solutions CdSxSe1−x x=(0, 0.17, 0.33, 0.5, 0.67, 0.83, 1.0) is investigated. The experimental x-ray and x-ray-induced electronic spectra of sulfur in CdS are compared with computed spectra. The calculations are performed using the FEFF (Version 7) program and a package of programs that implements a cluster version of the local-coherent-potential approximation. The effect of an electron vacancy in the 1s level on the x-ray absorption spectrum is investigated. The band gap as a function of the anion concentration in the solution is estimated. Fiz. Tverd. Tela (St. Petersburg) 41, 41–43 (January 1999)  相似文献   

5.
The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of organic dye sensitizer 4-Aminophthalonitrile were studied based on Hartee-Fock (HF) and Density Functional Theory (DFT) using the hybrid functional B3LYP. Ultraviolet-visible (UV-Vis) spectrum was investigated by Time Dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the visible and near-UV regions were assigned based on TD-DFT calculations. The absorption bands have been assigned to nπ* transitions. Calculated results suggest that the three excited states with the lowest excited energies in 4-Aminophthalonitrile is due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is due to an electron injection process from excited dye to the semiconductor’s conduction band. The role of cyanide and amine group in 4-Aminophthalonitrile geometries, electronic structures, and vibrational spectra were compared with experimental values and in view of these results, it was concluded that 4-Aminophthalonitrile used in Dye Sensitized Solar Cells (DSSC) gives a good conversion efficiency.  相似文献   

6.
《Physics letters. A》2020,384(1):126035
Lightweight carbon materials with excellent thermal and mechanical properties have important applications in aerospace industry. In this study, the stability, mechanical properties, lattice thermal conductivity, electronic structure, infrared and Raman spectrum of sp3 hybridized low-density fullerite C24 were investigated according to density functional theory (DFT) calculations. It was found that the fullerite C24 was both thermodynamic and dynamic stable. Quasi-harmonic approximation and Grüneisen parameter calculations clarified why the fullerite C24 had a positive thermal expansion coefficient at low temperature. The fullerite C24 also exhibited excellent mechanical properties. Interestingly, the Vickers hardness of carbon allotropes was found to almost be linear proportional to the density of a carbon material. HSE06 electronic structure calculations showed that it was a semiconductor with direct bandgap of 2.56 eV. Anharmonic lattice dynamic calculations showed that its thermal conductivity was higher than semiconductor silicon. Besides, Raman and infrared active modes as well as the corresponding spectra were presented.  相似文献   

7.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper discusses the effect of dynamic zero-point and thermal spin-density fluctuations (SDF) on the electronic spectrum of the nearly-ferromagnetic semiconductor FeSi. It is shown that near T=0° zero-point SDF can lead to so much splitting of the electron states of the valence and conduction band that a “gapless” ground state arises. As the temperature increases, the forbidden gap in the spectrum of d electrons first reappears due to suppression of zero-point fluctuations and then disappears again, as the amplitude of thermal spin fluctuations increases. It is these transformations of the electronic spectrum that are the reason for the anomalous changes in the magnetic susceptibility with temperature observed experimentally. Fiz. Tverd. Tela (St. Petersburg) 40, 1437–1441 (August 1998)  相似文献   

9.
The electronic structures and magnetic properties of strained monolayer MnPSe3 are investigated systematically via first-principles calculations. It is found that the magnetic ground state of monolayer MnPSe3 can be significantly affected by biaxial strain engineering, while the semiconducting characteristics are well-preserved. Owing to the sensitivity of the magnetic coupling towards structural deformation, a biaxial tensile strain of approximately 13% can lead to an antiferromagnetic (AFM)- ferromagnetic (FM) transition. The strain-dependent magnetic stability is mainly attributed to the competition of the direct AFM interaction and indirect FM superexchange interaction between the two nearest-neighbor Mn atoms. In addition, we find that FM MnPSe3 is an intrinsic half semiconductor with large spin exchange splitting in the conduction bands, which is crucial for the spin-polarized carrier injection and detection. The sensitive interdependence among the external stimuli, electronic structure, and magnetic coupling makes monolayer MnPSe3 a promising candidate for spintronics.  相似文献   

10.
The influence of spin and charge density fluctuations on the electronic structure is studied for the generalized fd-model. It is demonstrated that these fluctuations lead to electronic spectrum transformation and redistribution of electrons between f- and d-states, thereby giving rise to electronic phase transformations. It is established that these phenomena are observed in ferromagnetic and paramagnetic regions. A detailed analysis is performed on an example of the EuO ferromagnetic semiconductor.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 100–104, October, 2004.  相似文献   

11.
We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using theframework of the multi-orbital single-impurity Haldane-Anderson model of atransition-metal impurity in a semiconductor host. The parameters of the effectiveHaldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. Thequantum Monte Carlo (QMC) technique is then used to calculate the one-electron andmagnetic correlation functions of this effective model. We observe that new states forminside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction atthe impurity 3d orbitals. In particular, the lowest unoccupiedstates correspond to an impurity bound state, which consists of states from mainly the CNaxial ligand and the corrin ring as well as the Co eg-like orbitals. We alsoobserve that the Co?(3d) orbitals can develop antiferromagneticcorrelations with the surrounding atoms depending on the filling of the impurity boundstates. In addition, we make comparisons of the HF+QMC data with the density functionaltheory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.  相似文献   

12.
Optoelectronics research requires cheap materials with a broad spectrum of optical, electronic, and structural properties. The class of Heusler compounds and ternary structures provide many possibilities for finding alternative group IV and III–V semiconductor compounds. This study introduces wider band gap materials for use in solar cells as an alternative to cadmium sulfide buffer layers. The buffer layer is inserted between the absorber layer (p-type) and the transparent window layer (n-type) to enhance the maximum amount of light transmission. Reasonable calculations are reported for the band gaps of copper-containing materials: LiCuS, BaCu2S2, and Li2CuSb. Previous optical analysis measurements of these films determined that the band gaps were 1.8 and 1.9 eV for BaCu2S2 and LiCuS, respectively. In general, semiconductor compounds have been studied theoretically, but there are major differences between the experimental and theoretically calculated band gaps. A suitable calculation method for semiconductor compounds is described in this study. For the first time, calculations based on the Engel and Vosko method are introduced for these semiconductor compounds. This method yields band gaps that are comparable to the experimental values, which facilitate the development of microscopic analyses of these compounds. Direct band gaps of 1.15 and 1.7 eV were obtained for BaCu2S2 and LiCuS, respectively, whereas the indirect band gap was 0.7 eV for Li2CuSb.  相似文献   

13.
用角积分紫外光电子能谱技术测量了Yb2.75C60薄膜的价带电子态密度分布.相纯Yb2.75C60样品通过C1s芯态x射线电子谱峰的位移表征.结果表明Yb2.75C60是半导体,在费米能级处几乎没有电子态分布.Yb 6s电子态和C60LUMO能带的杂化效应不可忽略,有部分Yb 6s电子分布在Yb-C60杂化能带上. 关键词: 2.75C60')" href="#">Yb2.75C60 电子能谱 电子态密度  相似文献   

14.
Using the electron density functional theory, the electronic structure and magnetic properties of possible contacts on the (001) interface between XYZ and X 2 YZ Heusler alloys (NiMnSb, Co2 MnSi) and III–V semiconductors (InP, GaAs) are studied. It is demonstrated that, in both cases, the high degree of spin polarization is achieved in Ni/P(As) or Co/As contacts. The influence of structure defects located on the surface and interfaces on the spin polarization at the Fermi level is studied. The nature of surface states at the Heusler alloy-semiconductor interface and electron factors that favor preservation or loss of the half-metallic behavior in the contacts are analyzed. Calculations of the local magnetic moments show that the magnetic properties of atoms in the contact are not changed significantly at the interface because of the partial compensation of their coordination by atoms of the semiconductor. The spin polarization can be increased by doping of the X element sublattice.  相似文献   

15.
《Physics letters. A》2006,349(5):384-387
We have investigated the electronic and magnetic properties of the molecule-based magnet Co[N(CN)2]2 using the full potential linearized augmented plane wave (FP-LAPW) method. The relative stability of the ground state, density of states and charge distributions were examined. Total energy calculations reveals that the ferromagnetic phase is a stable ground state for Co[N(CN)2]2 in agreement with the previous experimental findings. It is noteworthy that we predict the Co[N(CN)2]2 is a ferromagnetic semiconductor with a small band gap of 0.027 eV, and the semiconductor property can be connected to the strong crystal field splitting of Co2+ 3d states for Co[N(CN)2]2. Such a molecule-based ferromagnetic semiconductor would offer a potential for semiconductor applications, therefore, an experimental confirmation of our theoretical predictions is encouraged.  相似文献   

16.
It is found that ultrathin cesium and barium coatings radically change the electronic properties of the surface and the near-surface region of epitaxial n-GaN(0001) layers. A charge accumulation layer serving as a quasi-two-dimensional electronic channel is first formed by adsorption on the surface of a semiconductor. It is revealed that photoemission from the accumulation layer is excited by visible light from the transparency region of GaN and is characterized by a high quantum yield. It is found that the photoemission thresholds hν s and hν p for s-and p-polarized excitation are equal to each other and correspond to the work function. The lowest work function for Cs,Ba/n-GaN interfaces is observed at Cs or Ba coverages close to 0.5 monolayer. Two bands induced by the local interaction of cesium (barium) adatoms with gallium dangling bonds are detected in the electronic spectrum of surface states of Cs,Ba/n-GaN interfaces. An oscillation structure is observed in spectral dependences of the photoyield. This effect is new for photoemission. A model of the effect is proposed. It is found that electronic and photoemission properties of the interfaces correlate with the structural perfectness of the epitaxial n-GaN(0001) layers.  相似文献   

17.
The electronic density of states of the SiAu surface is calculated using a continued fraction technique. The geometric structure of the surface alloy Au4Si is generated by molecular dynamics. The local density of states on Si atoms in a metallic environment differs qualitatively from the sp spectrum of a typical semiconductor. The calculated densities of p states of Si are in good agreement with recent X-ray spectra of Si in a metallic environment.  相似文献   

18.
This work reports on the synthesis, crystallographic determination and spectroscopic characterization of gadolinium(III), terbium(III) and europium(III) 3-mercaptopropionate complexes, aqua-tris(3-mercaptopropionate)lanthanide(III) - [Ln(mpa)3(H2O)]. The Judd-Ofelt intensity parameters were experimentally determined from emission spectrum of the [Eu(mpa)3(H2O)]complex and they were also calculated from crystallographic data. The complexes are coordination polymers, where the units of each complex are linked together by carboxylate groups leading to an unidimensional and parallel chains that by chemical interactions form a tridimensional framework. The emission spectrum profile of the [Eu(mpa)3(H2O)] complex is discussed based on point symmetry of the europium(III) ion, that explains the bands splitting observed in its emission spectrum. Photoluminescent analysis of the [Gd(mpa)3(H2O)] complex show no efficient ligand excitation but an intense charge transfer band. The excitation spectra of the [Eu(mpa)3(H2O)] and [Tb(mpa)3(H2O)] complexes do not show evidence of energy transfer from the ligand to the excited levels of these trivalent ions. Therefore the emission bands are originated only by direct f-f intraconfigurational excitation of the lantanide(III) ions.  相似文献   

19.
侯碧辉  刘凤艳  焦彬  岳明 《物理学报》2012,61(7):77302-077302
电子浓度是与金属的宏观特性相关的重要参数.反射光谱和霍尔效应分别是得出电子浓度和载流子浓度的基本实验.两个纳米稀土金属铥Tm样品(样品1,平均粒径100nm,样品2,平均粒径10nm)的红外---紫外反射光谱实验表明,金属铥Tm表面的反射光学性质具有金属的特征,6s能带具有与碱金属相近的电子浓度np,数值分别为2.434×1028/m3和1.701×1028/m3.而样品的霍尔效应实验测得金属Tm的载流子是电子-空穴型的,载流子浓度nH仅分别为8.032×1024/m3和7.679×1024/m3,仅仅是费米面附近的电子-空穴状态.另外,铥Tm的电导率比半导体的大3个量级.晶粒纳米化使电子浓度np减小,电导率σ减小,载流子浓度减小,而霍尔系数RH增大.  相似文献   

20.
Manoj Kumar  Amita Chandra 《Ionics》2010,16(9):849-853
Composites of polymer electrolyte polyethylene oxide (PEO) complexed with NH4ClO4, (PEO:NH4ClO4), having different weight ratios of dispersed semiconductor CuS (0–5 wt.%) have been prepared and characterized. The dispersal of CuS was achieved by its in situ formation in the viscous solution of polymer electrolyte (PEO:NH4ClO4) by sulfuration of CuSO4 using H2S. The band gap of CuS dispersed in the composites was found to be ~2.4 eV, which is higher than that of the bulk CuS for which it is 2.2 eV. Scanning electron microscopy studies show that the particle size varies from ~200 nm to several hundreds of nanometers. Polarization studies show that the semiconductor dispersed polymer composite so obtained has mixed ionic and electronic conduction. Detailed IV studies show that the dispersoid is a p-type semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号