首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a new trust region algorithm is proposed for solving unconstrained optimization problems. This method can be regarded as a combination of trust region technique, fixed step-length and ODE-based methods. A feature of this proposed method is that at each iteration, only a system of linear equations is solved to obtain a trial step. Another is that when a trial step is not accepted, the method generates an iterative point whose step-length is defined by a formula. Under some standard assumptions, it is proven that the algorithm is globally convergent and locally superlinear convergent. Preliminary numerical results are reported.  相似文献   

2.
In this paper, we propose a new trust region method for unconstrained optimization problems. The new trust region method can automatically adjust the trust region radius of related subproblems at each iteration and has strong global convergence under some mild conditions. We also analyze the global linear convergence, local superlinear and quadratic convergence rate of the new method. Numerical results show that the new trust region method is available and efficient in practical computation.  相似文献   

3.
Abstract. A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm is proved under the same conditions of usual trust regionmethod.  相似文献   

4.
This paper studies subspace properties of trust region methods for unconstrained optimization, assuming the approximate Hessian is updated by quasi- Newton formulae and the initial Hessian approximation is appropriately chosen. It is shown that the trial step obtained by solving the trust region subproblem is in the subspace spanned by all the gradient vectors computed. Thus, the trial step can be defined by minimizing the quasi-Newton quadratic model in the subspace. Based on this observation, some subspace trust region algorithms are proposed and numerical results are also reported.  相似文献   

5.
In this paper, we propose a trust region method for unconstrained optimization that can be regarded as a combination of conic model, nonmonotone and line search techniques. Unlike in traditional trust region methods, the subproblem of our algorithm is the conic minimization subproblem; moreover, our algorithm performs a nonmonotone line search to find the next iteration point when a trial step is not accepted, instead of resolving the subproblem. The global and superlinear convergence results for the algorithm are established under reasonable assumptions. Numerical results show that the new method is efficient for unconstrained optimization problems.  相似文献   

6.
By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under strict complementarity conditions. This work is supported by National Natural Science Foundation of China (No. 10671126) and Shanghai Leading Academic Discipline Project (S30501).  相似文献   

7.
A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q-quadratic convergences of the algorithm are proved. Several rules of choosing trial steps and trust region radii are also discussed. Project supported by the National Natural Science Foundation of China (Grant No. 19136012).  相似文献   

8.
An algorithm for solving the problem of minimizing a quadratic function subject to ellipsoidal constraints is introduced. This algorithm is based on the impHcitly restarted Lanczos method to construct a basis for the Krylov subspace in conjunction with a model trust region strategy to choose the step. The trial step is computed on the small dimensional subspace that lies inside the trust region.

One of the main advantages of this algorithm is the way that the Krylov subspace is terminated. We introduce a terminationcondition that allows the gradient to be decreased on that subspace.

A convergence theory for this algorithm is presented. It is shown that this algorithm is globally convergent and it shouldcope quite well with large scale minimization problems. This theory is sufficiently general that it holds for any algorithm that projects the problem on a lower dimensional subspace.  相似文献   

9.
An adaptive trust region method and its convergence   总被引:17,自引:0,他引:17  
In this paper, a new trust region subproblem is proposed. The trust radius in the new subproblem adjusts itself adaptively. As a result, an adaptive trust region method is constructed based on the new trust region subproblem. The local and global convergence results of the adaptive trust region method are proved. Numerical results indicate that the new method is very efficient.  相似文献   

10.
In this paper, a nonmonotone trust region algorithm for unconstrained optimization problems is presented. In the algorithm, a kind of nonmonotone technique, which is evidently different from Grippo, Lampariello and Lucidi’s approach, is used. Under mild conditions, global and local convergence results of the algorithm are established. Preliminary numerical results show that the new algorithm is efficient.  相似文献   

11.
In this paper, we propose a new nonmonotone line search technique for unconstrained optimization problems. By using this new technique, we establish the global convergence under conditions weaker than those of the existed nonmonotone line search techniques.  相似文献   

12.
We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where the Hessian of the objective function is approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy which makes use of the information of the previous iteration and current iteration. The new method needs less memory and computational efforts. The global convergence and Q-superlinear convergence of the algorithm are established under the mild conditions. Numerical results on a series of standard test problems are reported to show that the new method is effective and attractive for large scale unconstrained optimization problems.  相似文献   

13.
A global optimization problem is studied where the objective function f(x)f(x) is a multidimensional black-box function and its gradient f(x)f(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant KK. Different methods for solving this problem by using an a priori given estimate of KK, its adaptive estimates, and adaptive estimates of local Lipschitz constants are known in the literature. Recently, the authors have proposed a one-dimensional algorithm working with multiple estimates of the Lipschitz constant for f(x)f(x) (the existence of such an algorithm was a challenge for 15 years). In this paper, a new multidimensional geometric method evolving the ideas of this one-dimensional scheme and using an efficient one-point-based partitioning strategy is proposed. Numerical experiments executed on 800 multidimensional test functions demonstrate quite a promising performance in comparison with popular DIRECT-based methods.  相似文献   

14.
In this paper, we investigate a class of nonlinear complementarity problems arising from the discretization of the free boundary problem, which was recently studied by Sun and Zeng [Z. Sun, J. Zeng, A monotone semismooth Newton type method for a class of complementarity problems, J. Comput. Appl. Math. 235 (5) (2011) 1261–1274]. We propose a new non-interior continuation algorithm for solving this class of problems, where the full-Newton step is used in each iteration. We show that the algorithm is globally convergent, where the iteration sequence of the variable converges monotonically. We also prove that the algorithm is globally linearly and locally superlinearly convergent without any additional assumption, and locally quadratically convergent under suitable assumptions. The preliminary numerical results demonstrate the effectiveness of the proposed algorithm.  相似文献   

15.
In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.  相似文献   

16.
A interior point scaling projected reduced Hessian method with combination of nonmonotonic backtracking technique and trust region strategy for nonlinear equality constrained optimization with nonegative constraint on variables is proposed. In order to deal with large problems,a pair of trust region subproblems in horizontal and vertical subspaces is used to replace the general full trust region subproblem. The horizontal trust region subproblem in the algorithm is only a general trust region subproblem while the vertical trust region subproblem is defined by a parameter size of the vertical direction subject only to an ellipsoidal constraint. Both trust region strategy and line search technique at each iteration switch to obtaining a backtracking step generated by the two trust region subproblems. By adopting the l1 penalty function as the merit function, the global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion and the second order correction step are used to overcome Maratos effect and speed up the convergence progress in some ill-conditioned cases.  相似文献   

17.
In this paper, the feasible type SQP method is improved. A new SQP algorithm is presented to solve the nonlinear inequality constrained optimization. As compared with the existing SQP methods, per single iteration, in order to obtain the search direction, it is only necessary to solve equality constrained quadratic programming subproblems and systems of linear equations. Under some suitable conditions, the global and superlinear convergence can be induced.  相似文献   

18.
Nonmonotonic trust region algorithm   总被引:24,自引:0,他引:24  
A nonmonotonic trust region method for unconstrained optimization problems is presented. Although the method allows the sequence of values of the objective function to be nonmonotonic, convergence properties similar to those for the usual trust region method are proved under certain conditions, including conditions on the approximate solutions to the subproblem. To make the solution satisfy these conditions, an algorithm to solve the subproblem is also established. Finally, some numerical results are reported which show that the nonmonotonic trust region method is superior to the usual trust region method according to both the number of gradient evaluations and the number of function evaluations.The authors would like to thank Professor L. C. W. Dixon for his useful suggestions.  相似文献   

19.
An interval method for bounding level sets, modified to increase its efficiency and to get sharper bounding boxes, is presented. The new algorithm was tested with standard global optimization test problems. The test results show that, while the modified method gives a more valuable, guaranteed reliability result set, it is competitive with non-interval methods in terms of CPU time and number of function evaluations.This work was supported by Grant OTKA 1074/1987, and in part by DAAD Fellowship No. 314/108/004/8 during the author's stay at Düsseldorf University.  相似文献   

20.
In this note we consider an algorithm for quasiconcave nonlinear fractional programming problems, based on ranking the vertices of a linear fractional programming problem and techniques from global optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号