首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 863 毫秒
1.
When contacting with acoustically-vibrated structures a fluid volume can take a [time-averaged] geometric shape differing from capillary equilibrium. In accordance with theorems by Beyer et al. (2001) this shape (vibroequilibrium) furnishes a local minimum of a [quasi-potential energy] functional. The variational problem contains five dimensionless parameters evaluating the fluid volume, the wave number of acoustic field in the fluid domain, the contact angle and two newly-introduced numbers (1, 2) giving relationships between (surface tension, gravitation) and Kapitsas vibrational forces/energy. The paper focuses on negligible small wave numbers (incompressible fluid) and two-dimensional flows. Although the variational problem may in some isolated cases have analytical solutions, it requires in general numerical approaches. Numerical examples simulate experiments by Wolf (1969) and Ganiyev et al. (1977) on vibroequilibria in horizontally vibrating tanks. These show that there appear at least two types of stable vibroequilibria associated with symmetric (possible non-connected) and asymmetric surface shapes. The paper represents also numerical results on flattening and vibrostabilisation of a drop hanging beneath a vibrating plate (experiments by Faraday (1831)).Received: October 17, 2002; revised: June 30, 2003  相似文献   

2.
The initial boundary value problem for the compressible Navier-Stokes equation is considered in an infinite layer of Rn. It is proved that if n?3, then strong solutions to the compressible Navier-Stokes equation around parallel flows exist globally in time for sufficiently small initial perturbations, provided that the Reynolds and Mach numbers are sufficiently small. The proof is given by a variant of the Matsumura-Nishida energy method based on a decomposition of solutions associated with a spectral property of the linearized operator.  相似文献   

3.
We study the Navier-Stokes equations for compressible barotropic fluids in a bounded or unbounded domain Ω of R3. We first prove the local existence of solutions (ρ,u) in C([0,T*]; (ρ +H3(Ω)) × under the assumption that the data satisfies a natural compatibility condition. Then deriving the smoothing effect of the velocity u in t>0, we conclude that (ρ,u) is a classical solution in (0,T**)×Ω for some T** ∈ (0,T*]. For these results, the initial density needs not be bounded below away from zero and may vanish in an open subset (vacuum) of Ω.  相似文献   

4.
In this paper, we consider a Cauchy problem for the three-dimensional compressible viscoelastic flow with large initial data. We establish a blow-up criterion for the strong solutions in terms of the gradient of velocity only, which is similar to the Beale-Kato-Majda criterion for ideal incompressible flow (cf. Beale et al. (1984) [20]) and the blow-up criterion for the compressible Navier-Stokes equations (cf. Huang et al. (2011) [21]).  相似文献   

5.
6.
We investigate a steady flow of a viscous compressible fluid with inflow boundary condition on the density and inhomogeneous slip boundary conditions on the velocity in a cylindrical domain Ω=Ω0×(0,L)∈R3. We show existence of a solution , p>3, where v is the velocity of the fluid and ρ is the density, that is a small perturbation of a constant flow (, ). We also show that this solution is unique in a class of small perturbations of . The term u⋅∇w in the continuity equation makes it impossible to show the existence applying directly a fixed point method. Thus in order to show existence of the solution we construct a sequence (vn,ρn) that is bounded in and satisfies the Cauchy condition in a larger space L(0,L;L2(Ω0)) what enables us to deduce that the weak limit of a subsequence of (vn,ρn) is in fact a strong solution to our problem.  相似文献   

7.
8.
We consider the full Navier-Stokes equations for viscous polytropic fluids with nonnegative thermal conductivity. We prove the existence of unique local strong solutions for all initial data satisfying some compatibility condition. The initial density need not be positive and may vanish in an open set. Moreover our results hold for both bounded and unbounded domains.  相似文献   

9.
We consider steady compressible Navier-Stokes-Fourier system for a gas with pressure p and internal energy e related by the constitutive law p=(γ−1)?e, γ>1. We show that for any there exists a variational entropy solution (i.e. solution satisfying the weak formulation of balance of mass and momentum, entropy inequality and global balance of total energy). This result includes the model for monoatomic gas (). If , these solutions also fulfill the weak formulation of the pointwise total energy balance.  相似文献   

10.
The global existence of measure-valued solutions of initial boundary-value problems in bounded domains to systems of partial differential equations for viscous non-Newtonian isothermal compressible monopolar fluid and the global existence of the weak solution for multipolar fluid is proved.  相似文献   

11.
The paper examines the issue of stability of Poiseuille type flows in regime of compressible Navier–Stokes equations in a three dimensional finite pipe-like domain. We prove the existence of stationary solutions with inhomogeneous Navier slip boundary conditions admitting nontrivial inflow condition in the vicinity of constructed generic flows. Our techniques are based on an application of a modification of the Lagrangian coordinates. Thanks to such an approach we are able to overcome difficulties coming from hyperbolicity of the continuity equation, constructing a maximal regularity estimate for a linearized system and applying the Banach fixed point theorem.  相似文献   

12.
13.
The balance laws of mass, momentum and energy are considered for a pth power Newtonian fluid undergoing one dimensional longitudinal motions. For initial-boundary value problems involving fixed endpoints held at a prescribed temperature or insulated, we prove exponential convergence of solutions to equilibria for generic initial data. The estimates for different boundary conditions are presented in a unified manner by utilising the thermodynamic concept of availability.  相似文献   

14.
In this paper, we consider global subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and has boundary conditions on the nozzle walls. Existence and uniqueness of global subsonic solution are established for an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The results give a strictly mathematical proof to the assertion in Bers (1958) [2]: there exists a critical value of the incoming mass flux such that a global subsonic flow exists uniquely in a nozzle, provided that the incoming mass flux is less than the critical value. The existence of subsonic flow is obtained by the precisely a priori estimates for the elliptic equation of two variables. With the assumptions on the nozzle in the far fields, the asymptotic behavior can be derived by a blow-up argument for the infinitely long nozzle. Finally, we obtain the uniqueness of uniformly subsonic flow by energy estimate and derive the existence of the critical value of incoming mass flux.  相似文献   

15.
In this paper, we consider the free boundary problem for a simplified version of Ericksen–Leslie equations modeling the compressible hydrodynamic flow of nematic liquid crystals in dimension one. We obtain both existence and uniqueness of global classical solutions provided that the initial density is away from vacuum.  相似文献   

16.
The aim of this paper is to study the behaviour of a weak solution to Navier-Stokes equations for isothermal fluids with a nonlinear stress tensor for time going to infinity. In an analogous way as in [18], we construct a suitable function which approximates the density for time going to infinity. Using properties of this function, we can prove the strong convergence of the density to its limit state. The behaviour of the velocity field and kinetic energy is mentioned as well.  相似文献   

17.
We prove that the uniform stability at permanently acting disturbances of a given solution of the Navier-Stokes equations for viscous compressible isothermic fluid is a consequence of the uniform exponential stability of the zero solution of so-called linearized equations.The research was supported by the grant No. 201/93/2177 of Grant Agency of Czech Republic.  相似文献   

18.
We address the question of well-posedness in spaces of analytic functions for the Cauchy problem for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary. By a suitable extension of the Cauchy-Kowalewski theorem we construct a locally in time, unique, real-analytic solution and give an explicit rate of decay of the radius of real-analyticity.  相似文献   

19.
We show some new uniqueness results for compressible flows with data having critical regularity. In the barotropic case, uniqueness is stated whenever the space dimension N satisfies N ≥ 2, and in the polytropic case, whenever N ≥ 3. The endpoints N = 2 in the barotropic case and N = 3 in the polytropic case were left open in [4], [5] and [6].  相似文献   

20.
Solutions for the fully compressible Navier–Stokes equations are presented for the flow and temperature fields in a cubic cavity with large horizontal temperature differences. The ideal-gas approximation for air is assumed and viscosity is computed using Sutherland's law. The three-dimensional case forms an extension of previous studies performed on a two-dimensional square cavity. The influence of imposed boundary conditions in the third dimension is investigated as a numerical experiment. Comparison is made between convergence rates in case of periodic and free-slip boundary conditions. Results with no-slip boundary conditions are presented as well. The effect of the Rayleigh number is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号