首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparative analysis of Au, Cu, Pt, Ni and Fe nanoclusters growth on amorphous carbon substrate by proposed kinetic model based on rate equations is present. Partial sticking coefficients introduced into the model let to discriminate elementary processes such as adatom adsorption and diffusion on bare substrate and on top of islands, nucleation and mobility of islands and its coalescence, 2-d and 3-d island growth modes. The quantitative fittings of experimental time dependencies of surface coverage, clusters density, cluster size are performed by solving model equations. From the best fittings the values of phenomenological coefficients defining elementary processes are found for different materials. Comparative analysis of those coefficients let to discover mechanisms of nanoclusters formation and growth of different materials. It is shown that clusterization for Cu and Au is more favorable than for Pt and Ni. Diffusivity for Pt and Ni on amorphous carbon (a-C) substrate is significantly less than for Au and Cu. In opposite, diffusivity on the top of islands for Ni and Pt is significantly higher than for Au and Cu. The mobility of islands for Au and Cu is much higher than for Ni and Pt. The fitting of experimental curves of Fe deposition on a-C at different temperatures showed that temperature mainly influences sticking process but not diffusion.  相似文献   

2.
We provide an overview of structure and reactivity of selected bimetallic single crystal electrodes obtained by the method of spontaneous deposition. The surfaces that are described and compared are the following: Au(1 1 1)/Ru, Pt(1 1 1)/Ru and Pt(1 1 1)/Os. Detailed morphological information is presented and the significance of this work in current and further study of nanoisland covered surfaces in the catalytic and spectroscopic perspective is highlighted. All surfaces were investigated by in situ STM and by electroanalytical techniques. The results confirm our previous data that nanosized Ru islands are formed with specific and distinctive structural features, and that the Ru growth pattern is different for Au(1 1 1) and Pt(1 1 1). For Au(1 1 1), Ru is preferentially deposited on steps, while a random and relatively sparse distribution of Ru islands is observed on terraces. In contrast, for Ru deposited on Pt(1 1 1), a homogeneous deposition over all the Pt(1 1 1) surface was found. Os is also deposited homogeneously, and at a much higher rate than Ru, and even within a single deposition it forms a large proportion of multilayer islands. On Au(1 1 1), the Ru islands on both steps and terraces reach the saturation coverage within a short deposition time, and the Ru islands grow to multilayer heights and assume hexagonal shapes. On Pt(1 1 1), the Ru saturation coverage is reached relatively fast, but when a single deposition is applied, Ru nanoislands of mainly monoatomic height are formed, with the Ru coverage not exceeding 0.2 ML. For Ru deposits on Pt(1 1 1), we demonstrate that larger and multilayer islands obtained in two consecutive depositions can be reduced in size--both in height and width--by oxidizing the Ru islands and then by reducing them back to a metallic state. A clear increase in the Ru island dispersion is then obtained. However, methanol oxidation chronoamperometry shows that the surface with such a higher dispersion is less active to methanol oxidation than the initial surface. A preliminary interpretation of this effect is provided. Finally, we studied CO stripping reaction on Pt(1 1 1)/Ru, Au(1 1 1)/Ru and on Pt(1 1 1)/Os. We relate CO oxidation differences observed between Pt(1 1 1)/Ru and Pt(1 1 1)/Os to the difference in the oxophilicity of the two admetals. In turn, the difference in the CO stripping reaction on Pt(1 1 1)/Ru and Au(1 1 1)/Ru with respect to the Ru islands is linked to the effect of the substrate on the bond strength and/or adlayer structure of CO and OHads species.  相似文献   

3.
The thermally controlled synthesis of graphene from propylene molecules on the Ni(111) surface in ultrahigh vacuum is studied by scanning tunneling microscopy and density functional theory. It is established that the adsorption of propylene on Ni(111) atomic terraces at room temperature results in the dehydration of propylene molecules with the formation of single-atomic carbon chains and in the complete dissociation of propylene at the edges of atomic steps with the subsequent diffusion of carbon atoms below the surface. The annealing of such a sample at 500°С leads to the formation of multilayer graphene islands both from surface atomic chains and by the segregation of carbon atoms collected in the upper nickel atomic layers. The process of formation of an epitaxial graphene monolayer until the complete filling of the nickel surface is controllably observed. Atomic defects seen on the graphene surface are interpreted as individual nickel atoms incorporated into graphene mono- or bivacancies.  相似文献   

4.
半金属铋(Bi)的表面合金具有的Rashba效应,和其具体结构性质有重要关联.本文结合扫描隧道显微镜(STM)和密度泛函理论(DFT),系统地研究了Bi原子在Ag(111)和Au(111)上的不同初始生长行为.在室温Ag(111)上,连续的Ag2Bi合金薄膜会优先在Ag台阶边缘形成;在570 K Ag(111)上,随着...  相似文献   

5.
E. Sibert  F. Maroun 《Surface science》2004,572(1):115-125
The electrodeposition of Au on Pt(1 1 1) from electrolytes containing μM concentrations of was studied by in situ scanning tunneling microscopy. Under these conditions the Au flux is limited by diffusion in the electrolyte over a wide potential range, which allows to assess the effect of the electrochemical environment on the growth kinetics. Similar to gas phase metal deposition Au film growth proceeds via nucleation and lateral growth of Au monolayer islands, with the saturation island density strongly depending on the deposition potential and on the anion species in the electrolyte. For deposition in H2SO4 solution the saturation island density continuously increases with increasing potential between −0.2 and 0.5 V (SCE), whereas in Cl-containing H2SO4 it first decreases and then increases again. Following nucleation and growth theories this behavior can be attributed to potential-induced changes of the Au surface mobility, caused by changes in the density and structure of coadsorbed sulfate/bisulfate and chloride adlayers. Under conditions of high Au surface mobility multilayer growth proceeds via a typical Stranski-Krastanov growth mode, with layer-by-layer growth of a pseudomorphic Au film up to 2 ML and 3D growth of structurally relaxed islands at higher coverage, indicating thermodynamic control under these conditions.  相似文献   

6.
The growth and chemisorptive properties of monolayer films of Ag and Au deposited on both the Pt(111) and the stepped Pt(553) surfaces were studied using Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and low energy electron diffraction (LEED). AES studies indicate that the growth of Au on Pt(111) and Pt(553) and Ag on Pt(111) proceeds via a Stranski-Krastanov mechanism, whereas the growth of Ag on the Pt(553) surface follows a Volmer-Weber mechanism. Au dissolves into the Pt crystal bulk at temperatures > 800 K, whereas Ag desorbs at temperatures > 900 K. TDS studies of Ag-covered Pt surfaces indicate that the AgPt bond (283 kJ mol?1) is ~25 kJ mol?1 stronger than the AgAg bond (254 kJ mol?1). On the Pt(553) surface the Au atoms are uniformly distributed between terrace and step sites, but Ag preferentially segregates to the terraces. The decrease in CO adsorption on the Pt crystal surfaces is in direct proportion to the Ag or Au coverage. No CO adsorption could be detected for Ag or Au coverages above one monolayer at 300 K and 10?8 Torr. The heat of adsorption of CO on Pt is unaltered by the presence of Ag or Au.  相似文献   

7.
Surface chemical reactions often require a ready supply of substrate atoms to occur. In principle, steps serve as an efficient source of these atoms, provided that detachment rates from the step edges are sufficiently large. In this paper, we characterize atomic detachment rates from steps on clean Ag(110) by examining step fluctuations. We show that these rates are sufficient to supply atoms to form the added-row reconstruction of oxidized Ag(110) when the oxygen partial pressure is low. For high oxygen pressures, however, we find that step detachment rates are slow compared with oxidation rates, and the step source of Ag is supplemented by vacancy-island generation on the terraces. These results are compared to those obtained for the similar O/Cu(110) and O/Ni(110) systems.  相似文献   

8.
The electronic properties of thin metallic films of Pb, Ag, Au and In atoms deposited at 105 K on well defined metallic surface, i.e. Si(1 1 1)-(6 × 6)Au surface with 10 ML of annealed Pb, were investigated using four-point probe method in UHV condition. The structure of the substrate and deposited metals were monitored by the RHEED system. The electrical conductance, measured during the deposition of In and Pb atoms, shows the local minimum for the coverage equals about 0.3 ML whereas for Au and Ag atoms the conductance decreases during the first monolayer growth. For Au atoms the local maximum in the conductance was observed for the coverage about 0.55 ML, which can be connected with localized states. To describe theoretically the conductance behavior the tight-binding Hamiltonian and equation of motion for the Green’s function were used and good qualitative agreement was obtained.  相似文献   

9.
We have studied by scanning tunneling microscopy (STM) the effect of the reconstruction of a stepped Au(1 1 1) surface on the growth of silver sub-monolayer deposition. For narrow terraces, the reconstruction is disturbed and its pattern changes, Ag growth is therefore influenced. Thus growth of Ag on Au(7 8 8) vicinal surface can be controlled and leads to the formation of a highly ordered superlattice of nanostructures. Moreover, we show by tunneling conductance images that Ag islands exhibit electronic confinement effects of the Shockley surface state. Due to the homogeneity of their shapes and sizes, all the nanostructures of the self-assembled superlattice should exhibit similar electronic properties.  相似文献   

10.
The process of copper deposition on a structured Cu(111)-(9 × 9)-Ag surface, which represents a (9 × 9) loop dislocation network, is studied by scanning tunneling microscopy. It is found that, when the substrate temperature is 100 K and the copper coverage is 0.1–0.4 of a monolayer, islands of a size no greater than 50 Å are formed at the Ag/Cu(111) interface. The islands remain stable as the sample is heated to room temperature. The shape and boundaries of the nanoislands follow the initial surface superstructure and are determined by the nonuniformity of the interaction of the upper silver layer with the copper substrate. The mechanism of island formation and the origin of their stability are explained in terms of the atom exchange between the adsorbate and substrate.  相似文献   

11.
Atomic depth distribution and growth modes of Ga on an Si(111)-alpha-(sqrt[3]xsqrt[3])-Au surface at room temperature were studied after each monolayer deposition of Ga via reflection high-energy electron diffraction and characteristic x-ray spectroscopy measurements as functions of glancing angle theta(g) of the incident electron beam. One monolayer of Ga grew on the Au layer, and the sqrt[3]xsqrt[3] periodicity was conserved below the Ga overlayer. Above a critical Ga coverage of about one monolayer, this growth mode drastically changed; i.e., Au atoms dissociated from the sqrt[3]xsqrt[3] structure and Ga grew into islands of Ga-Au alloy.  相似文献   

12.
The growth process of silver on a Si(111) substrate has been studied in detail by low-energy ion-scattering spectroscopy (ISS) combined with LEED-AES. Neon ions of 500 eV were used as probe ions of ISS. The ISS experiments have revealed that the growth at room temperature and at high temperature are quite different from each other even in the submonolayer coverage range. The following growth models have been proposed for the respective temperatures. At room temperature, the deposited Ag forms a two-dimensional (2D) island at around 2/3 monolayer (ML) coverage, where the Ag atoms are packed commensurately with the Si(111)1 substrate. One third of the substrate Si surface remains uncovered there. Then it starts to develop into Ag crystal, and at a few ML coverage a 3D island of bulk Ag crystal grows directly on the substrate. An intermediate layer, which covers uniformly the whole surface before the growth of Ag crystal, does not exist. At high temperatures (>~200°C), the well-known Si(111)√3-Ag layer is formed as an intermediate layer, which consists of 2/3 ML of Ag atoms and covers the whole surface uniformly. These Ag atoms are embedded in the first double layer of the Si substrate. It is concluded that the formation of the √3 structure needs relatively high activation energy which may originate from the large displacement of Si atoms owing to the embedment of the Ag atoms, and does not proceed below about 200°C. The most stable state of the Ag atoms on the outermost Si layer is in the shape of an island, both for the Si(111) surface and for the Si(111)√3-Ag surface.  相似文献   

13.
Au induced faceting of a 4 degrees vicinal Si(001) surface was studied with chemical resolution using soft x-ray photoemission electron microscopy. For the first time a direct and quantitative determination of the local Au coverage in situ and during deposition was possible. Au atoms, necessary for the expansion of (001) terraces, are accummulated from a lattice gas, resulting in a phase separation between Au enriched terraces and Au depleted step bunches. During a second stage Au also adsorbs on the step bunches and transforms them into (119) facets. A simple Monte Carlo simulation shows that the initial coverage difference between terraces and bunches determines the regularity of the formed mesoscopic grating.  相似文献   

14.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

15.
The low energy deposition of silver cluster cations with 561 (±5) atoms on a cold fullerene covered gold surface has been studied both by scanning tunneling microscopy and molecular dynamics simulation. The special properties of the C60/Au(111) surface result in a noticeable fixation of the clusters without a significant change of the cluster shape. Upon heating to room temperature we observe a flattening or shrinking of the cluster samples due to thermal activation. Similar changes were observed also for mass selected Ag clusters with other sizes. For comparison we also studied Ag islands of similar size, grown by low temperature deposition of Ag atoms and subsequent annealing. A completely different behavior is observed with much broader size distributions and a qualitatively different response to annealing.  相似文献   

16.
The geometric and electronic structures occuring during the growth of Al on a single crystal Ag(111) surface have been studied using a combination of low energy electron diffraction (LEED), Auger electron spectroscopy (AES), energy loss spectroscopy (ELS) and work function measurements. The Auger signal versus deposition time plots, which were used to monitor the growth mode, are shown to behave in an identical fashion to that expected for layer-by-layer (Frank-van der Merwe) growth. LEED was used to determine the lateral periodicity of thin Al films and shows that Al forms, at very small coverages, 2D islands which have the same structure as the Ag(111) substrate and which grow together to form the first monolayer. At substrate temperatures of 150 K a well defined (1 × 1) structure with the same orientation as the underlying Ag(111) can be seen up to at least 12 ML. After completion of the third monolayer the ELS spectrum approached that observed for bulk aluminium. At a coverage of 3 ML the work function decreases by 0.4 eV from the clean silver value.  相似文献   

17.
动力学晶格蒙特卡洛方法模拟Cu薄膜生长   总被引:2,自引:1,他引:2  
利用动力学晶格蒙特卡洛方法模拟了Cu薄膜在Cu(100)面上的三维生长过程。模型中考虑了四个动力学过程:原子沉积、增原子迁移、双原子迁移和台阶边缘原子迁移,各动力学过程发生的概率由多体势函数确定。讨论了基底温度、沉积速率及原子覆盖率对Cu原子迁移、成核和表面岛生长等微观生长机制的影响;获得了Cu薄膜的表面形貌图并计算了表面粗糙度。模拟结果表明,随基底温度升高或沉积速率下降,岛的平均尺寸增大,数目减少,形状更加规则。低温时,Cu薄膜表现为分形的离散生长,高温时,Cu原子迁移能力增强形成密集的岛。Cu薄膜表面粗糙度随着基底温度的升高而迅速减小;当基底温度低于某一临界温度时,表面粗糙度随原子覆盖率或沉积速率的增大而增大;当基底温度超过临界温度时,表面粗糙度随原子覆盖率或沉积速率的变化很小,基本趋于稳定。  相似文献   

18.
We have investigated a room-temperature growth mode of ultrathin Ag films on a Si(111) surface with an Sb surfactant using STM in a UHV system. On the Sb-passivated Si surface, small sized islands were formed up to 1.1 ML. Flat Ag islands were dominant at 2.1 ML, coalescing into larger islands at 3.2 ML. Although the initial growth mode of Ag films on the Sb-terminated Si(111) surface was Volmer-Weber (island growth), the films were much more uniform than Ag growth on clean (Si(111) at the higher coverages. From the analysis of STM images of Ag films grown with and without an Sb surfactant, the uniform growth of Ag films using an Sb surfactant appears to be caused by the kinetic effects of Ag on the preadsorbed Sb layer. Our STM results indicated that Sb suppresses the surface diffusion of Ag atoms and increases the Ag-island density. The increased island density is believed to cause coalescence of Ag islands at higher coverages of Ag, resulting in the growth of atomically flat and uniform Ag islands on the Sb surfactant layer.  相似文献   

19.
张超  王永亮  颜超  张庆瑜 《物理学报》2006,55(6):2882-2891
采用嵌入原子方法的原子间相互作用势,通过分子动力学方法模拟了低能Pt原子与Cu,Ag,Au,Ni,Pd替位掺杂Pt(111)表面的相互作用过程,系统研究了替位原子对表面吸附原子产额、溅射产额和空位缺陷产额的影响规律,分析了低能沉积过程中沉积原子与基体表面的相互作用机理以及替位原子的作用及其影响规律.研究结果显示:替位原子的存在不仅影响着沉积能量较低时的表面吸附原子的产额与空间分布,而且对沉积能量较高时的低能表面溅射过程和基体表面空位的形成产生重要影响.替位原子导致的表面吸附原子产额、表面原子溅射以及空位形 关键词: 分子动力学 低能粒子 替位掺杂 表面原子产额 溅射 空位  相似文献   

20.
An analysis of LEED data from the Ag(111) surface at room temperature and 5° ? Θ ? 16°, φ = 12° has been carried out in order to test three different model potentials for the exchange and correlation part of the one-electron LEED potential. Clean Au(111) surfaces have been grown on Ag(111) at room temperature at a deposition rate of 0.15 Å s?1. Similar method of calculation and potentials have been employed for the Au overlay er on Ag(111). After the deposition of ? 2.5 monolayers of Au/Ag(111) the growth of Au can proceed in two different ways. One of them matches satisfactorily with the theoretical calculation for the Au(111) overlayer on Ag(111) following the fcc sequence. The other seems to be concerned with the diffusion of Ag during the Au growth. Similar curves have been obtained during the diffusion of Ag through 350 Å of Au(111).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号