首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The sequential addition of water molecules to protonated and deprotonated forms of the four mononucleotides dAMP, dCMP, dGMP, and dTMP was studied experimentally by equilibrium measurements using an electrospray mass spectrometer equipped with a drift cell and theoretically by computational methods including molecular modeling and density functional theory calculations. Experiments were carried out in positive and negative ion mode, and calculations included the protonated and deprotonated forms of the four nucleotides. For deprotonated anionic nucleotides the experimental enthalpies of hydration (DeltaH degrees n) were found to be similar for all four systems and varied between -10.1 and -11.5 kcal mol-1 for the first water molecule (n = 1) and -8.3 and -9.6 kcal mol-1 for additional water molecules (n = 2-4). Theory indicated that the first water molecule binds to the charge-carrying phosphate group. Simulations of deprotonated mononucleotides with four water molecules yielded a large number of structures with similar energies. In some of the structures all four water molecules cluster around the phosphate group, and in other structures the four water molecules each hydrate a different functional group of the nucleotide. These include the phosphate group, the deoxyribose hydroxyl group, and various functional groups on the nucleobases. Experimental DeltaH degrees 1 values for the protonated cationic mononucleotides ranged from -10.5 to -13.5 kcal mol-1 with more negative values (< or =-12 kcal mol-1) for dCMP, dGMP, and dTMP and the least negative value for dAMP. For n = 2-4 DeltaH degrees n values varied from -6.9 to -9.7 kcal/mol and were similar in value to the deprotonated nucleotides except for dAMP. Theory on the protonated nucleotides indicated that the first water molecule binds to the charge-carrying group for dCMP, dGMP, and dTMP. For protonated dAMP, on the other hand, the charge-carrying N3 group is well self-solvated by the phosphate group and not readily available for a hydrogen bond with the water molecule. The insight gained on nucleotide stabilization by individual water molecules is used to discuss the competition between hydration of individual nucleotides and Watson-Crick base pairing.  相似文献   

2.
超声波破碎-高效液相色谱法定量检测核酸   总被引:1,自引:0,他引:1  
董莲华  盛灵慧  王晶  黎朋 《分析化学》2011,(9):1442-1446
采用超声波破碎结合高效液相色谱技术,建立了定量检测质粒DNA的方法,测量结果可以溯源至核苷酸标准物质.采用超声波破碎(功率300 W,频率24 kHz)技术将质粒DNA破碎成200~500 bp的小片段DNA,再用蛇毒磷酸二酯酶将其水解为4种核苷酸(dCMP:3.2 min;dTMP:4.7 min; dGMP:5.3...  相似文献   

3.
Esaka Y  Inagaki S  Goto M  Sako M 《Electrophoresis》2001,22(1):104-108
We investigated the separation of five deoxyribonucleoside monophosphates: 2'-deoxyguanosine-5'-monophosphate (dGMP), 2'-deoxyadenosine-5'-monophosphate (dAMP), 2'-deoxycytosine-5'-monophosphate (dCMP), 2'-deoxythymidine-5'-monophosphate (dTMP) and a dGMP adduct possessing N2-ethyl-guanine, which has been noted in relation to mutagenesis of alcohol, using capillary zone electrophoresis (CZE). The concentration of polyethylene glycol (PEG) as a modifier and the pH of the running solutions can efficiently control the observed separation. Interaction of PEG with analytes was quantitatively evaluated. PEG worked effectively as a hydrophobic selector in these separations. The values of pKa of the acidic-NH-groups in the base moieties of dGMP, dTMP, and the dGMP adduct are close to that of boric acid used as buffer of the running solutions. The control of their charge was facilitated, enabling improved separations. A more sufficient and fast separation was achieved by both optimization of pH of the running solutions and PEG concentration compared with that obtained by pH control alone. On-line concentration using a stacking method followed by the PEG-assisted CZE was briefly studied.  相似文献   

4.
采用稳态吸收和荧光光谱、圆二色谱和皮秒时间分辨荧光光谱手段, 研究了5,10,15,20-四[4-(N-甲基吡啶)]卟啉(TMPyP4)与腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)等4种碱基, 以及相应的核苷、核苷酸和单链DNA的结合能力和光谱学性质. 研究结果发现, 嘌呤与TMPyP4的结合能力比嘧啶的强. 对于某一碱基系列, 结合能力强弱顺序依次为: 碱基~核苷<核苷酸<单链DNA. 时间分辨荧光谱研究发现, 除鸟嘌呤外, 核酸和TMPyP4复合物的荧光动力学均含有快(1~2 ns)和慢(约10 ns)两个衰减过程, 它们分别是由激基复合体和环境极性对激发态TMPyP4分子的影响所致. 单链DNA能诱导TMPyP4产生诱导圆二色信号, 而单分子(碱基、核苷、核苷酸)则无此功能.  相似文献   

5.
Sugar-base C(1')-N(1) and phosphate-sugar C(5')-O(5') bond breakings of 2'-deoxycytidine-5'-monophosphates (dCMP) and 2'-deoxythymidine-5'- monophosphates (dTMP) and their radical anions have been explored theoretically at the B3LYP/DZP++ level of theory. Calculations show that the low-energy electrons attachment to the pyrimidine nucleotides results in remarkable structural and chemical bonding changes. Predicted Gibbs free energies of reaction DeltaG for the C(5')-O(5') bond dissociation process of the radical anions are -14.6 and -11.5 kcal mol(-1), respectively, and such dissociation processes may be intrinsically spontaneous in the gas phase. Furthermore, the C(5')-O(5') bond cleavage processes of the anionic dCMP and dTMP were predicted to have activation energies of 6.9 and 8.0 kcal mol(-1) in the gas phase, respectively, much lower than the barriers for the C(1')-N(1) bond breaking process, showing that the C-O bond dissociation in DNA single strand breaks is a dominant process as observed experimentally.  相似文献   

6.
The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 <-- S0 vibronic spectra of 2PY.U, 2PY.3MU, 2PY.1MU, and 2PY.T were measured using UV laser resonant two-photon ionization (R2PI). The spectra of the Watson-Crick and wobble isomers of 2PY.1MU were separated using UV-UV spectral hole-burning. We identify the different isomers by combining three different diagnostic tools: (1) Selective methylation of the uracil N3-H group, which allows formation of the sugar-edge isomer only, and methylation of the N1-H group, which leads to formation of the Watson-Crick and wobble isomers. (2) The experimental S1 <-- S0 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give detailed insight into the intermolecular force field.  相似文献   

7.
The DNA double helix poly(dGdC).poly(dGdC) is studied by fluorescence upconversion spectroscopy with femtosecond resolution. It is shown that the excited-state relaxation of the duplex is faster than that of the monomeric components dGMP and dCMP. This contrasts with the behavior of duplexes composed exclusively of adenine-thymine base pairs, for which an overall lengthening of the fluorescence lifetimes with respect to that of an equimolar mixture of dAMP and TMP was reported previously. Despite the difference in the excited-state deactivation rate between the two types of duplexes, the signature of ultrafast energy transfer is present in both of them. It is attested by the decrease of fluorescence anisotropy decay of the duplexes on the subpicosecond time scale, where molecular motions are inhibited, and is corroborated by the fact that their steady-state fluorescence spectra do not change with the excitation wavelength. Energy transfer involves excited states delocalized over at least two bases, whose existence is revealed by the UV absorption spectrum of the duplex, clearly different from that of an equimolar spectrum of dGMP and dCMP.  相似文献   

8.
The reactions of histamine, the natural dipeptide carcinine (-Ala-HA), and its analogs with 5"-monodeoxyribonucleotides (dNMP) in the presence of triphenylphosphine, 2,2"-dipyridyl disulfide, and N-methylimidazole were studied. The yield of phosphamide derivatives decreases from 72% to 17% as the length of the linker group between the imidazole ring and the terminal aliphatic amino group is increased. Hydrolytic stability of the resulting conjugates was examined. The stability of the bonds in the —O—P(O)2—NH— group linking the nucleotide and peptide portions of the conjugate depends on the nature of the heterocyclic base of the nucleotide and decreases in the series dTMP > dCMP > dAMP.  相似文献   

9.
Methylglyoxal is a highly reactive alpha-ketoaldehyde that is produced endogenously and present in the environment and foods. It can modify DNA and proteins to form advanced glycation end products (AGEs). Emerging evidence has shown that N2-(1-carboxyethyl)-2'-deoxyguanosine (N2-CEdG) is a major marker for AGE-linked DNA adducts. Here, we report, for the first time, the preparation of oligodeoxyribonucleotides (ODNs) containing individual diastereomers of N2-CEdG via a postoligomerization synthesis method, which provided authentic substrates for examining the replication and repair of this lesion. In addition, thermodynamic parameters derived from melting temperature data revealed that the two diastereomers of N2-CEdG destabilized significantly the double helix as represented by a 4 kcal/mol increase in Gibbs free energy for duplex formation at 25 degrees C. Primer extension assay results demonstrated that both diastereomers of N2-CEdG could block considerably the replication synthesis mediated by the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I. Strikingly, the polymerase incorporated incorrect nucleotides, dGMP and dAMP, opposite the lesion more preferentially than the correct nucleotide, dCMP.  相似文献   

10.
2-羟基吡啶与水氢键作用的理论研究   总被引:7,自引:0,他引:7  
本文采用量子化学的Hatree-Fock方法和密度泛函理论(DFT)的B3LYP方法,在6-31G(d)水平上,研究了2-羟基吡啶分子(Hy)及其酮式互变异构体2(1H)-吡啶酮(Py)与水的相互作用。考察它们之间在形成Hy…H2O,Py…H2O,Hy…Hy,Py…Py和Hy…Py等复合物前后的能量变化和分子结构参数变化特点。计算结果表明,在这些复合物中都形成了较强的氢键作用,在水合物中,Py与水形成复合物时能量降低较多,与实验结果一致。经过零点振动能(ZPVE)和基组叠加误差(BSSE)校正后的复合物离解能分别为38.3,40.8,73.0,82.7和71.1 kJ/mol(B3LYP/6-31G(d)),水合物的离解能远小于二聚体复合物,而酮式结构的二聚体的离解能最大。  相似文献   

11.
An analytic potential energy function is proposed and applied to evaluate the amide–amide and amide–water hydrogen‐bonding interaction energies in peptides. The parameters in the analytic function are derived from fitting to the potential energy curves of 10 hydrogen‐bonded training dimers. The analytic potential energy function is then employed to calculate the N? H…O?C, C? H…O?C, N? H…OH2, and C?O…HOH hydrogen‐bonding interaction energies in amide–amide and amide–water dimers containing N‐methylacetamide, acetamide, glycine dipeptide, alanine dipeptide, N‐methylformamide, N‐methylpropanamide, N‐ethylacetamide and/or water molecules. The potential energy curves of these systems are therefore obtained, including the equilibrium hydrogen bond distances R(O…H) and the hydrogen‐bonding energies. The function is also applied to calculate the binding energies in models of β‐sheets. The calculation results show that the potential energy curves obtained from the analytic function are in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction, which demonstrate that the analytic function proposed in this work can be used to predict the hydrogen‐bonding interaction energies in peptides quickly and accurately. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

12.
The interaction between metal ions and nucleotides is well characterized, as is their importance for metabolic processes, e.g. in the synthesis of nucleic acids. Hence, it is surprising to find that no detailed comparison is available of the metal ion-binding properties between nucleoside 5'-phosphates and 2'-deoxynucleoside 5'-phosphates. Therefore, we have measured here by potentiometric pH titrations the stabilities of several metal ion complexes formed with 2'-deoxyadenosine 5'-monophosphate (dAMP2-), 2'-deoxyadenosine 5'-diphosphate (dADP3-) and 2'-deoxyadenosine 5'-triphosphate (dATP4-). These results are compared with previous data measured under the same conditions and available in the literature for the adenosine 5'-phosphates, AMP(2-), ADP(3-) and ATP(4-), as well as guanosine 5'-monophosphate (GMP(2-)) and 2'-deoxyguanosine 5'-monophosphate (dGMP(2-)). Hence, in total four nucleotide pairs, GMP(2-)/dGMP(2-), AMP(2-)/dAMP(2-), ADP(3-)/dADP(3-) and ATP(4-)/dATP(4-) (= NP/dNP), could be compared for the four metal ions Mg2+, Ni2+, Cu2+ and Zn2+ (= M2+). The comparisons show that complex stability and extent of macrochelate formation between the phosphate-coordinated metal ion and N7 of the purine residue is very similar (or even identical) for the AMP(2-)/dAMP(2-) and ADP(3-)/dADP(3-) pairs. In the case of the complexes formed with ATP(4-)/dATP(4-) the 2'-deoxy complexes are somewhat more stable and show also a slightly enhanced tendency for macrochelate formation. This is different for guanine nucleotides: the stabilities of the M(dGMP) complexes are clearly higher, as are the formation degrees of their macrochelates, than is the case with the M(GMP) complexes. This enhanced complex stability and greater tendency to form macrochelates can be attributed to the enhanced basicity (DeltapKaca. 0.2) of N7 in the 2'-deoxy compound. These results allow general conclusions regarding nucleic acids to be made.  相似文献   

13.
The dissociation kinetics of a series of complementary and noncomplementary DNA duplexes, (TGCA)(2) (3-), (CCGG)(2) (3-), (AATTAAT)(2) (3-), (CCGGCCG)(2) (3-), A(7).T(7) (3-), A(7).A(7) (3-), T(7).T(7) (3-), and A(7).C(7) (3-) were investigated using blackbody infrared radiative dissociation in a Fourier transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Activation energies range from 1.2 to 1.7 eV, and preexponential factors range from 10(13) to 10(19) s(-1). Dissociation of the duplexes results in cleavage of the noncovalent bonds and/or cleavage of covalent bonds leading to loss of a neutral nucleobase followed by backbone cleavage producing sequence-specific (a - base) and w ions. Four pieces of evidence are presented which indicate that Watson-Crick (WC) base pairing is preserved in complementary DNA duplexes in the gas phase: i. the activation energy for dissociation of the complementary dimer, A(7).T(7) (3-), to the single strands is significantly higher than that for the related noncomplementary A(7).A(7) (3-) and T(7).T(7) (3-) dimers, indicating a stronger interaction between strands with a specific base sequence, ii. extensive loss of neutral adenine occurs for A(7).A(7) (3-) and A(7).C(7) (3-) but not for A(7).T(7) (3-) consistent with this process being shut down by WC hydrogen bonding, iii. a correlation is observed between the measured activation energy for dissociation to single strands and the dimerization enthalpy (-DeltaH(d)) in solution, and iv. molecular dynamics carried out at 300 and 400 K indicate that WC base pairing is preserved for A(7).T(7) (3-) duplex, although the helical structure is essentially lost. In combination, these results provide strong evidence that WC base pairing can exist in the complete absence of solvent.  相似文献   

14.
To understand the intermolecular interactions between chalcogen centers (O, S, Se, Te), quantum chemical calculations on pairs of model systems were carried out. For the oxygen derivatives, one of the components of the supermolecules consists of dimethyl ether, while the second component is either dimethyl ether (1) or ethynyl methyl ether (2) or methyl cyanate (3). The model calculations were also extended to the sulfur (4-6), selenium (7-9), and tellurium congeners (10-12). The MP2/SDB-cc-pVTZ, 6-311G level of theory was used to derive the geometrical parameters and the global energies of the model systems. A detailed analysis based on symmetry adapted perturbation theory (SAPT) reveals that induction and dispersion forces contribute to the bonding in each case. For 1-3 the electrostatic energy also contributes to the intermolecular bonding, but not for 4-12. The NBO analysis reveals that the interaction in the dimers 1-3 is mainly due to weak hydrogen bonding between methyl groups and chalcogen centers. Similar hydrogen bonding is also found in the case of 4 and to a lesser extent in 5 and 7. For the aggregates with heavier centers the chalcogen-chalcogen interaction dominates, and hydrogen bonding only plays a minor role. Electron-withdrawing groups on the chalcogen centers increase the interaction energy and reduce the intermolecular distance dramatically. The one-electron picture of an interaction between the lone pair of the donor and the chalcogen carbon sigma orbital allows a qualitatively correct reproduction of the observed trend.  相似文献   

15.
The density functional theory (DFT) was used to calculate the relative stability of rhodanine dimers and the energy of intermolecular interaction in them. Analysis of the electron density showed hydrogen bonding in the dimers. The energies of individual hydrogen bonds were determined for the symmetrical dimers. The polarizable continuum model was used to calculate the solvation (hydration) energies of the structures studied. The effect of dimerization on the position of infrared absorption bands was demonstrated.  相似文献   

16.
Recently we carried out ab initio molecular orbital calculations of the hydrogen bond energies in the dimers and trimers of N-methylacetamide (NMA), and found the existence of a cooperative effect in the hydrogen bonding, by which formation of one hydrogen bond in a hydrogen-bonded chain enhances the strength of another hydrogen bond. In order to confirm the existence of such a cooperative effect, we have determined experimentally the enthalpy changes occurring upon hydrogen bonding of NMA in CCl4 solution. First, following the method proposed by us, the population fractions of free (non-bonded) NH protons are obtained from the observed amide proton NMR chemical shifts and the IR intensities of the free NH stretching bands. Next, the enthalpy changes are evaluated by analyzing the equilibrium between the free and bonded states of an NH proton. In this analysis, the existence of the CCl4 solvent is taken into account. The stabilization energy of hydrogen bonds in a trimer, as compared with twice the hydrogen bond energy in a dimer, is 5.4 kJ mol(-1), in good agreement with the calculated value (5.9 kJ mol(-1)). This result provides experimental confirmation of the existence of a cooperative effect in hydrogen bonding.  相似文献   

17.
We have investigated the association interactions between the fluorescent dyes TAMRA, Cy3B and Alexa-546 and the DNA deoxynucleoside monophosphates by means of fluorescence quenching and fluorescence correlation spectroscopy (FCS). The interactions of Cy3B and TAMRA with the nucleotides produce a decrease in the apparent diffusion coefficient of the dyes, which result in a shift toward longer times in the FCS autocorrelation decays. Our results with Cy3B demonstrate the existence of Cy3B-nucleotide interactions that do not affect the fluorescence intensity or lifetime of the dye significantly. The same is true for TAMRA in the presence of dAMP, dCMP and dTMP. In contrast, the diffusion coefficient of Alexa 546 remains practically unchanged even at high concentrations of nucleotide. These results demonstrate that interactions between this dye and the four dNMPs are not significant. The presence of the negatively charged sulfonates and the bulky chlorine atoms in the phenyl group of Alexa 546 possibly prevent strong interactions that are otherwise possible for TAMRA. The characterization of dye-DNA interactions is important in biophysical research because they play an important role in the interpretation of energy transfer experiments, and because they can potentially affect the structure and dynamics of the DNA.  相似文献   

18.
We present M06-2X density functional calculations of the chloroform/water partition coefficients of cytosine, thymine, uracil, adenine, and guanine and calculations of the free energies of association of selected unsubstituted and alkylated nucleotide base pairs in chloroform and water. Both hydrogen bonding and π-π stacking interactions are considered. Solvation effects are treated using the continuum solvent models SM8, SM8AD, and SMD, including geometry optimization in solution. Comparison of theoretical results with available experimental data indicates that all three of these solvation models predict the chloroform-water partition coefficients for the studied nucleobases qualitatively well, with mean unsigned errors in the range of 0.4-1.3 log units. All three models correctly predict the preference for hydrogen bonding over stacking for nucleobase pairs solvated in chloroform, and SM8, SM8AD, and SMD show similar accuracy in predicting the corresponding free energies of association. The agreement between theory and experiment for the association free energies of the dimers in water is more difficult to assess, as the relevant experimental data are indirect. Theory predicts that the stacking interaction of nucleobases in water is more favorable than hydrogen bonding for only two out of three tested hetero-dimers.  相似文献   

19.
The dissociation kinetics of protonated n-acetyl-L-alanine methyl ester dimer (AcAlaME(d)), imidazole dimer, and their cross dimer were measured using blackbody infrared radiative dissociation (BIRD). Master equation modeling of these data was used to extract threshold dissociation energies (E(o)) for the dimers. Values of 1.18 +/- 0.06, 1.11 +/- 0.04, and 1.12 +/- 0.08 eV were obtained for AcAlaME(d), imidazole dimer, and the cross dimer, respectively. Assuming that the reverse activation barrier for dissociation of the ion-molecule complex is negligible, the value of E(o) can be compared to the dissociation enthalpy (DeltaH(d) degrees ) from HPMS data. The E(o) values obtained for the imidazole dimer and the cross dimer are in agreement with HPMS values; the value for AcAlaME(d) is somewhat lower. Radiative rate constants used in the master equation modeling were determined using transition dipole moments calculated at the semiempirical (AM1) level for all dimers and compared to ab initio (RHF/3-21G*) calculations where possible. To reproduce the experimentally measured dissociation rates using master equation modeling, it was necessary to multiply semiempirical transition dipole moments by a factor between 2 and 3. Values for transition dipole moments from the ab initio calculations could be used for two of the dimers but appear to be too low for AcAlaME(d). These results demonstrate that BIRD, in combination with master equation modeling, can be used to determine threshold dissociation energies for intermediate size ions that are in neither the truncated Boltzmann nor the rapid energy exchange limit.  相似文献   

20.
Fluorobenzenes are pi-acceptor synthons that form pi-stacked structures in molecular crystals as well as in artificial DNAs. We investigate the competition between hydrogen bonding and pi-stacking in dimers consisting of the nucleobase mimic 2-pyridone (2PY) and all fluorobenzenes from 1-fluorobenzene to hexafluorobenzene (n-FB, with n = 1-6). We contrast the results of high level ab initio calculations with those obtained using ultraviolet (UV) and infrared (IR) laser spectroscopy of isolated and supersonically cooled dimers. The 2PY.n-FB complexes with n = 1-5 prefer double hydrogen bonding over pi-stacking, as diagnosed from the UV absorption and IR laser depletion spectra, which both show features characteristic of doubly H-bonded complexes. The 2-pyridone.hexafluorobenzene dimer is the only pi-stacked dimer, exhibiting a homogeneously broadened UV spectrum and no IR bands characteristic for H-bonded species. MP2 (second-order M?ller-Plesset perturbation theory) calculations overestimate the pi-stacked dimer binding energies by about 10 kJ/mol and disagree with the experimental observations. In contrast, the MP2 treatment of the H-bonded dimers appears to be quite accurate. Grimme's spin-component-scaled MP2 approach (SCS-MP2) is an improvement over MP2 for the pi-stacked dimers, reducing the binding energy by approximately 10 kJ/mol. When applied to explicitly correlated MP2 theory (SCS-MP2-R12 approach), agreement with the corresponding coupled-cluster binding energies [at the CCSD(T) level] is very good for the pi-stacked dimers, within +/- 1 kJ/mol for the 2PY complexes with 1-fluorobenzene, 1,2-difluorobenzene, 1,2,4,5-tetrafluorobenzene, pentafluorobenzene and hexafluorobenzene. Unfortunately, the SCS-MP2 approach also reduces the binding energy of the H-bonded species, leading to disagreement with both coupled-cluster theory and experiment. The SCS-MP2-R12 binding energies follow the SCS-MP2 binding energies closely, being about 0.5 and 0.7 kJ/mol larger for the H-bonded and pi-stacked forms, respectively, in an augmented correlation-consistent polarized valence quadruple-zeta basis. It seems that the SCS-MP2 and SCS-MP2-R12 methods cannot provide sufficient accuracy to replace the CCSD(T) method for intermolecular interactions where H-bonding and pi-stacking are competitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号