首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The heat and mass transfer in an unsaturated wet cylindrical porous bed packed with quartz particles was investigated theoretically for relatively low convective drying rates. Local thermodynamic equilibrium was assumed in the mathematical model describing the multi-phase flow in the unsaturated porous media using the energy and mass conservation equations to describe the heat and mass transfer during the drying. The drying model included convection and capillary transport of the free water, diffusion of bound water, and convection and diffusion of the gas. The numerical results indicated that the drying process could be divided into three periods, the temperature rise period, the constant drying rate period and the decreasing drying rate period. The numerical results agreed well with the experimental data verifying that the mathematical model can evaluate the drying performance of porous media for low drying rates. The effects of drying conditions such as the ambient temperature, the relative humidity, and the velocity of the drying air, on the drying process were evaluated by numerical solution.  相似文献   

2.
Foam Drainage in Porous Media   总被引:1,自引:0,他引:1  
In this paper we present a simple analysis of liquid drainage in foams confined in porous media. First we derive the equation for the evolution of the liquid saturation using general mass and momentum conservation arguments and phenomenological relations between the transport parameters and liquid saturation. We find an unusual foam drainage equation in which the determinant terms express the competition between the external force field, represented here by the gravity field, and capillary pressure gradient. We present analytical solutions of the drainage equation in three cases: (a) gravity forces are dominant over capillary forces, (b) capillary forces are dominant over gravity forces, and (c) capillary and gravity forces are comparable in order of magnitude.  相似文献   

3.
A non-autonomous complex Ginzburg-Landau equation (CGLE) for the finite amplitude of convection is derived, and a method is presented here to determine the amplitude of this convection with a weakly nonlinear thermal instability for an oscillatory mode under throughflow and gravity modulation. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature, and solutal fields are treated by a perturbation expansion in powers of the amplitude of the applied gravity field. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The Nusselt and Sherwood numbers are obtained numerically to present the results of heat and mass transfer. It is found that throughflow and gravity modulation can be used alternately to heat and mass transfer. Further, oscillatory flow, rather than stationary flow, enhances heat and mass transfer.  相似文献   

4.
 This article provides an overview of all the experimental research studies in the field of heat and mass transfer by means of the holographic interferometry which were performed under the supervision of Professor Franz Mayinger during his professorship. The principle objective of this paper is to contribute to the knowledge base of the heat and mass transfer processes in various fields as well as to illustrate the capabilities of the holographic interferometry. Investigations of the heat transfer pattern in grooved channels and in various geometries of compact heat exchangers, drying processes of a dispersed, water-based varnish on paper, mixed convection in bent ducts, the growth and condensation of vapor bubbles in subcooled boiling and the simultaneous heat and mass transfer are presented. The results of all these studies demonstrate the successful application of the holographic interferometry and Professor Mayinger's highly valuable contribution in this area. Received on 11 April 2001  相似文献   

5.
Relative permeability relations: A key factor for a drying model   总被引:2,自引:0,他引:2  
In the modelling of heat, mass and momentum transfer phenomena which occur in a capillary porous medium during drying, the liquid and gas flows are usually described by the generalised Darcy laws. Nevertheless, the question of how to determine experimentally the relative permeability relations remains unanswered for most materials that consist of water and humid air, and as a result, arbitrary functions are used in the drying codes. In this paper, the emphasis is on deducing from both numerical and experimental studies a method for estimating pertinent relations for these key parameters. In the first part, the sensitivity of liquid velocity and, consequently, of drying kinetics in the variation of the relative permeabilities is investigated numerically by testing various forms. It is concluded that in order to predict a realistic liquid velocity behaviour, relative permeabilities can be linked to a measurable quantity: the capillary pressure. An estimation technique, based on simulations coupled with experimental measurements of capillary pressure, together with moisture content kinetics obtained for low or middle temperature convective drying, is deduced. In the second part, the proposed methodology is applied to pine wood. It is shown that the obtained relations provide closer representation of physical reality than those commonly used.  相似文献   

6.
IntroductionInrecentyears,agreatdealofattentionhasbeendirectedtowardsfullcoupledthermo_hydro_mechanicalanalysisindeformingporousmediaduetoextractionofundergroundfluids(water,petroleum ,naturalgas)inreservoir,environmentandconstructionengineering (Lewisan…  相似文献   

7.
The self-consistent model of heat and mass transfer during convective drying of capillary porous media describing both the first and the second periods of drying is presented in Musielak (Wydawnictwo Politechniki Poznańskiej, seria Rozprawy, nr 386 (2004a); Chem. Process Eng. 25, 393–409 (2004b)). The results of simulations of processes in steady conditions are shown (Musielak Wydawnictwo Politechniki Poznańskiej, seria Rozprawy, nr 386 (2004a); Chem. Process Eng. 25, 393–409 (2004b)). The main aim of the present work is to compare experimental results with those from numerical simulations. Three convective drying processes have been performed experimentally. The first and the second periods of drying are considered, during which the humidity of air in the dryer changes due to evaporation. The first process is used to establish drying parameters, whereafter the two remaining processes are simulated. Good agreement between experimental and simulation results is found, both qualitative and quantitative.  相似文献   

8.
An analysis has been provided for the entropy generated for the micro/nano scale heat and mass transfer in a capillary tube in terms of the gradients of velocity, temperature and concentration as well as the physical properties of the fluid. The heat and mass transfer rates are assumed to be uniform on the surface of the capillary tube. The optimum tube diameter that corresponds to the minimization of entropy generated and minimization of fluid flow resistance is about 1 mm. We have applied the method of thermodynamic optimization to capillary driven systems. The objective was to identify the geometric configuration that maximized performance by minimizing the entropy generated when the flow rate is prescribed.  相似文献   

9.
A numerical analysis of convective drying of a 3D porous solid of brick material is carried out using the finite element method and mass lumping technique. The energy equation and moisture transport equations for the porous solid are derived based on continuum approach following Whitaker’s theory of drying. The governing equations are solved using the Galerkin’s weighted residual method, which convert the governing equations into discretized form of matrix equations. The resulting capacitance matrices are made diagonal matrices by following the classical row-sum mass lumping technique. Hence with the use of the Eulerian time marching scheme, the final equations are reduced to simple algebraic equations, which can be solved directly without using an equation solver. The proposed numerical scheme is initially validated with experimental results for 1D drying problem and then tested by application to convective drying of 3D porous solid of brick material for four different aspect ratios obtained by varying the cross section of the solid. The mass lumping technique could correctly predict the wet bulb temperature of the solid under evaporative drying conditions. A parametric study carried out for three different values of convective heat transfer coefficients, 15, 30 and 45 W/m2 K shows an increased drying rate with increase in area of cross section and convective heat transfer coefficient. The proposed numerical scheme could correctly predict the drying behavior shown in the form of temperature and moisture evolutions.  相似文献   

10.
The balance of viscous, capillary and gravity forces strongly affects two-phase flow through porous media and can therefore influence the choice of appropriate methods for numerical simulation and upscaling. A strict separation of the effects of these various forces is not possible due to the nature of the nonlinear coupling between the various terms in the transport equations. However, approximate prediction of this force balance is often made by calculation of dimensionless quantities such as capillary and gravity numbers. We present an improved method for the numerical analysis of simulations which recognises the changing balance of forces – in both space and time – in a given domain. The classical two-phase transport equations for immiscible incompressible flow are expressed in two forms: (i) the convection–diffusion-gravity (CDG) formulation where convection and diffusion represent viscous and capillary effects, respectively, (ii) the oil pressure formulation where the viscous effects are attributed to the product of mobility difference and the oil pressure gradient. Each formulation provides a different perspective on the balance of forces although the two forms are equivalent. By discretising the different formulations, the effect of each force on the rate of change of water saturation can be calculated for each cell, and this can be analysed visually using a ternary force diagram. The methods have been applied to several simple models, and the results are presented here. When model parameters are varied to determine sensitivity of the estimators for the balance of forces, the CDG formulation agrees qualitatively with what is expected from physical intuition. However, the oil pressure formulation is dominated by the steady-state solution and cannot be used accurately. In addition to providing a physical method of visualising the relative magnitudes of the viscous, gravity and capillary forces, the local force balance may be used to guide our choice of upscaling method.  相似文献   

11.
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.  相似文献   

12.
This study examines the evaporative heat transfer and diffusive mass transfer of a droplet of CuCl2 solution. The validation of a new predictive model involves comparisons with experimental data from previous studies of different fluids based on non-dimensional analysis. The study provides new insight about the effects of different concentrations of water on the CuCl2 slurry drying at low to moderate air temperatures. Predictive correlations of heat and mass transfer are developed for the aqueous solution, subject to various drying conditions. The analysis is performed for moist air in contact with a sprayed aqueous solution of copper (II) chloride dihydrate [CuCl2·(2H2O)]. Results are presented and discussed for the drying processes.  相似文献   

13.
 The heat and mass transfer from moist tobacco on a band cooler was mathematically examined. The fibrous tobacco particles are 10 to 20 mm long and cut to about 1 mm width, with a leaf thickness of approx. 0.1 mm. The tobacco is loosely heaped on a band and cooled after the drying process. The cooling is carried out by cross flow operation with ambient air. Furthermore tobacco is subjected to moisture loss in the course of cooling. The mass transfer is affected upon the initial conditions as well as the considered drying mechanism (first and second drying period). The cooling process on the band cooler is calculated by applying a two dimensional stationary cross flow model as shown. Received on 28 March 2001  相似文献   

14.
During severe nuclear reactor accidents similar to Three-Mile Island, the fuel rods can fragment and thus convert the reactor core into a large rubble bed composed primarily of UO2 and ZrO2 particles. In the present study a one-dimensional model is developed for the melting and refreezing of such a bed. The analysis includes mass conservation equations for the species of interest (UO2 and ZrO2); a momentum equation that represents a balance among drag, capillary and gravity forces; an energy equation that incorporates the effects of convection by the melt, radiation and conduction through the bed and internal heat generation; and a UO2---ZrO2 phase diagram. A few key results are that (1) capillary forces are only important in beds composed of particles smaller than a few millimeters in diameter and in such beds, melt relocates both upward and downward until it freezes, forming crusted regions above and below the melt zone; (2) as melt flows downward and freezes, a flow blockage forms near the bottom of the bed and the location of this blockage is determined by the bottom thermal boundary layer thickness; (3) the maximum thickness of the lower crust increases linearly with the height of the bed; and (4) deviations from initially uniform composition profiles occur because ZrO2 is preferentially melted and these deviations decrease as the initial ZrO2 concentration is increased.  相似文献   

15.
This study presents a two dimensional analysis of coupled heat and mass transfer during the process of pasta drying. Velocity and temperature distributions of air flowing around the pasta are predicted in steady state condition. Using these profiles and the similarity between heat and mass boundary layers, local convective heat and mass transfer coefficients were determined on different points of pasta surface. By employing these values, the solution of coupled heat and mass transfer equations within the pasta object in unsteady state condition was obtained. Furthermore the effects of operating conditions such as velocity, temperature and relative humidity of air flow on drying rate of pasta were studied. Sensitivity analysis results show that the effects of air temperature and relative humidity on the rate of drying are more important than the effect of air velocity. Finally, the results obtained from this analysis were compared with the experimental data reported in the literatures and a good agreement was observed while, no adjustable parameter is used in the presented model.  相似文献   

16.
In fractured oil reservoirs, the gravity drainage mechanism has great potentials to higher oil recovery in comparison with other mechanisms. Recently, the forced gravity drainage assisted by gas injection has also been considered; however, there are few comprehensive studies in the literature. Dual porosity model, the most common approach for simulation of fractured reservoirs, uses transfer function concept to represent the fluid exchange between matrix and its neighborhood fractures. This study compares the results of different available transfer functions with those of fine grid simulations when forced gravity drainage contributes to oil production from a single matrix block. These comparisons can lead to a more sophisticated formulation including the interplay of capillary, gravity and viscous forces. As a result, a new matrix-fracture transfer function can be developed and its results can be tested against the results of fine-grid simulations. Moreover, the reliability of this model for simulation of forced gravity drainage has been demonstrated by performing some sensitivity analysis.  相似文献   

17.
We use an approach based on invasion percolation in a gradient (IPG) to describe the displacement patterns that develop when a fluid spreads on an impermeable boundary in a porous medium under the influence of gravity (buoyancy) forces in a drainage process. The approach is intended to simulate applications, such as the spreading of a DNAPL in the saturated zone and of a NAPL in the vadose zone on top of an impermeable layer, or the classical problems of gravity underruning and gravity override in reservoir engineering. As gravity acts in a direction transverse to the main displacement direction, a novel form of IPG develops. We study numerically the resulting patterns for a combination of transverse and parallel Bond numbers and interpret the results using the concepts of gradient percolation. A physical interpretation in terms of the capillary number, the viscosity ratio and the gravity Bond number is also provided. In particular, we consider the scaling of the thickness of the spreading gravity tongue, for the cases of gravitydominated and viscousunstable displacements, and of the propagating front in the case of stabilized displacement at relatively high rates. It is found that the patterns have percolation (namely fractallike) characteristics, which cannot be captured by conventional continuum equations. These characteristics will affect, for example, mass transfer and must be considered in the design of remediation processes.  相似文献   

18.
On Vaporizing Water Flow in Hot Sub-Vertical Rock Fractures   总被引:1,自引:0,他引:1  
Water injection into unsaturated fractured rock at above-boiling temperatures gives rise to complex fluid flow and heat transfer processes. Examples include water injection into depleted vapor-dominated geothermal reservoirs, and emplacement of heat-generating nuclear wastes in unsaturated fractured rock. We conceptualize fractures as two-dimensional heterogeneous porous media, and use geostatistical techniques to generate synthetic permeability distributions in the fracture plane. Water flow in hot high-angle fractures is simulated numerically, taking into account the combined action of gravity, capillary, and pressure forces, and conductive heat transfer from the wall rocks which gives rise to strong vaporization. In heterogeneous fractures boiling plumes are found to have dendritic shapes, and to be subject to strong lateral flow effects. Fractures with spatially-averaged homogeneous permeabilities tend to give poor approximations for vaporization behavior and liquid migration patterns. Depending on water flow rates, rock temperature, and fracture permeability, liquid water can migrate considerable distances through fractured rock that is at above-boiling temperatures and be only partially vaporized.  相似文献   

19.
Simultaneous heat and mass transfer in buoyancy-induced laminar boundary-layer flow along a vertical plate is studied for any ratio of the solutal buoyancy force to the thermal buoyancy force by using a new similarity transformation. The effects of the buoyancy ratio and Lewis number on the rates of heat and mass transfer are presented explicitly for most practical gaseous solutions (Pr=0.7, 0.21≤Sc≤2.1) and aqueous solutions (Pr=7, 140≤Sc≤1400). Very accurate correlations of the mass transfer and heat transfer rates are developed for the cases of single and combined buoyancy forces.  相似文献   

20.
Including gravity and wettability effects, a full analytical solution for the frontal flow period for 1D counter-current spontaneous imbibition of a wetting phase into a porous medium saturated initially with non-wetting phase at initial wetting phase saturation is presented. The analytical solution applicable for liquid–liquid and liquid–gas systems is essentially valid for the cases when the gravity forces are relatively large and before the wetting phase front hits the no-flow boundary in the capillary-dominated regime. The new analytical solution free of any arbitrary parameters can also be utilized for predicting non-wetting phase recovery by spontaneous imbibition. In addition, a new dimensionless time equation for predicting dimensionless distances travelled by the wetting phase front versus dimensionless time is presented. Dimensionless distance travelled by the waterfront versus time was calculated varying the non-wetting phase viscosity between 1 and 100 mPas. The new dimensionless time expression was able to perfectly scale all these calculated dimensionless distance versus time responses into one single curve confirming the ability for the new scaling equation to properly account for variations in non-wetting phase viscosities. The dimensionless stabilization time, defined as the time at which the capillary forces are balanced by the gravity forces, was calculated to be approximately 0.6. The full analytical solution was finally used to derive a new transfer function with application to dual-porosity simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号