首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis and self-assembly of different shapes and sizes of FePt nanoparticles. Our study shows that surfactants and solvent play an important role in the synthesis of different shapes and sizes of FePt nanoparticles. Higher boiling point solvents lead to the formation of spherical nanoparticles and low boiling point solvents form cubic nanoparticles. Our studies also indicate that self-assembly of FePt nanoparticles on substrates is a complex process that is sensitive to the concentration of excess surfactant in the nanoparticle solution.  相似文献   

2.
Magnetic metal and metal oxide nanoparticles capped with alkylamines have been synthesized and characterized by transmission electron microscopy. X-ray diffraction, energy dispersive X-ray analysis and magnetization measurements. Core-shell Pd-Ni particles with composition, Pd561Ni3000, (diameter ∼3.3 nm) are superparamagnetic at 5 K and organize themselves into two-dimensional crystalline arrays. Similar arrays are obtained with Pd561Ni3000Pd1500 nanoparticles containing an additional Pd shell. Magnetic spinel particles of γ-Fe2O3, Fe3O4 and CoFe2O4 of average diameters in the 4–6 nm range coated with octylamine are all supermagnetic at room temperature and yield close-packed disordered arrays. Relatively regular arrays are formed by dodecylaminecapped Fe3O4 nanoparticles (∼8.6 nm diameter) while well-ordered hexagonal arrays were obtained with octylamine-covered Co3O4 nanoparticles (∼4.2 nm diameter).  相似文献   

3.
In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe2O4-NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni2+) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni2+ ions and 10 mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data.  相似文献   

4.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

5.
CoPt nanoparticles are widely studied, in particular for their potentially very high magnetic anisotropy. However, their magnetic properties can differ from the bulk ones and they are expected to vary with the particle size. In this paper, we report the synthesis and characterization of well-defined CoPt nanoparticle samples produced in ultrahigh vacuum conditions following a physical route: the mass-selected low energy cluster beam deposition technique. This approach relies on an electrostatic deviation of ionized clusters which allows us to easily adjust the particle size, independently from the deposited equivalent thickness (i.e. the surface or volume particle density in a sample). Diluted samples made of CoPt particles, with different diameters, embedded in amorphous carbon are studied by transmission electron microscopy and superconducting interference device magnetometry, which gives access to the magnetic anisotropy energy distribution. We then compare the magnetic properties of two different particle sizes. The results are found to be consistent with an anisotropy constant (including its distribution) which does not evolve with the particle size in the range considered.  相似文献   

6.
The effect of transformation on the structure and magnetic properties of -Fe2O3 acicular nanoparticles (major axis, 330 nm; minor axis, 70 nm) has been investigated. The particles were prepared by hydrolysis and polymerization in an aqueous solution of FeCl3. Particles in the as-prepared sample are constituted by sub-units of 3–5 nm. The results indicate that the changes in the magnetic properties of the samples under thermal treatments (e.g. Morin transition, superparamagnetic behaviour) are mainly caused by the coalesce of the sub-units and by the variation of the crystallinity of nanoparticles.  相似文献   

7.
A grid of micrometer-sized core-shell particles was fabricated by magnetophoretic deposition using a water-based colloidal solution. The core-shell particles consist of a 640 nm diameter polystyrene spherical core covered with a shell of five layers of 12 nm diameter Fe3O4 nanocrystals. The separation and the length of the individual chains can be tuned by the magnetic field strength and the concentration of the particle solution. The magnetic properties were characterized by angular-dependent ferromagnetic resonance and SQUID magnetometry.  相似文献   

8.
We present simplified expressions for the out-of-phase component of the dynamic susceptibility χ″ of lognormal-sized magnetic nanoparticles under Brownian rotation. These expressions are based on transforming the general integral functions used for χ″ in the convolution of gaussian functions. χ″ can thus be expressed as a sum of gaussians with parameters directly related to those of the size distribution and to the saturation magnetization. The gaussian fit of χ″(ω) (where ω is the ac field frequency) is a simpler way to determine these structural and magnetic parameters as it avoids fitting χ″(ω) to an integral function. The expressions derived for χ″ suggest that χT data collapses in a ωη(T)/T scale (where T is the temperature and η the fluids viscosity), which is confirmed by numerical calculations. We also discuss the limits of validity of these approximations in real systems where both Néel and Brownian relaxation mechanisms coexist and we present further approximations for the relation of ωχ with the average volume (being ωχ the frequency at which χ″ is maximum). The ωη(T)/T scale can be used to qualitatively evaluate the dominance of the Brownian relaxation mechanism.  相似文献   

9.
An amperometric phenol biosensor was constructed by using poly(glycidylmethacrylate-co-vinyl ferrocene) grafted iron oxide nanoparticles for detection of different phenolic compounds (catechol, aminophenol, phenol, p-cresol, pyrogallol). The poly(glycidylmethacrylate-co-vinyl ferrocene) and nanoparticles were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The copolymer grafted iron oxide nanoparticles and Horseradish peroxidase (HRP) were covalently attached on gold (Au) electrode surface. The effect of pH, temperature and characteristic features such as; reusability and storage stability were studied. The electrode showed good response time within ~3 s. The electrocatalytic response showed a linear dependence on the phenolic compounds concentration ranging from 0.5 to 17.0 mM.  相似文献   

10.
Chen S  Yao JL  Guo QH  Gu RA 《光谱学与光谱分析》2011,31(12):3169-3174
磁性及其核壳复合纳米粒子由于在不同领域中具有广泛应用而受到研究者的极大关注,总结了磁性及磁性核壳纳米粒子常见的制备方法及各自的特点,并重点讨论了其在磁分离及光谱检测方面的应用,也介绍了本课题组在纳米粒子合成及应用方面所做的一部分工作。最后对磁性纳米粒子中存在的问题进行了探讨,并对其应用前景进行了展望。  相似文献   

11.
Magnetic nanoparticles grafted with poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. In this approach, S-benzyl S′-trimethoxysilylpropyltrithiocarbonate, used as a chain transfer agent for RAFT, was first immobilized onto the magnetic nanoparticle surface, and then PEGMA was grafted onto the surface of magnetic nanoparticle via RAFT polymerization. The results showed that P(PEGMA) chains grew from magnetic nanoparticles by surface-induced RAFT polymerization. The grafted P(PEGMA) chains can decrease the nonspecific adsorption of proteins on the surface of Fe3O4 nanoparticles.  相似文献   

12.
Quadrupole magnetic field-flow fractionation (MgFFF) is an analytical separation and characterization technique for nano- and micro-sized magnetic particles. It fractionates particles according to their content of magnetite or other magnetic material. The potential and versatility of MgFFF for separation and characterization of magnetic nanoparticles, such as those used for immunospecific labeling of biological cells for magnetic separation, is demonstrated. A broadly polydisperse sample of dextran-coated magnetite nanoparticles was eluted under programmed field decay conditions, and quantitative data concerning the distribution of magnetite content were determined from the elution profile using a data reduction method.  相似文献   

13.
Incorporation of magnetic nanoparticles in polymers with organic functional groups working as semiconducting substrate is of immense interest in the field of dilute magnetic semiconductors (DMS) and spintronics. In this article we report on synthesis and evaluation of dilutely doped (0-10 wt%) cobalt nanoparticles in emaraldine salt (ES) of polyaniline in the presence of dodecyl benzene sulfonic acid (DBSA) and p-toluene sulfonic acid (p-TSA) using a sonochemical-assisted-reduction approach as a possible DMS candidate. The X-ray diffraction pattern and high resolution transmission electron microscopy (HRTEM) image show the ES to be polycrystalline, in which 10 nm sized Co nanoparticles get embedded in its FCC structural form. From Fourier transform infrared (FT-IR) and UV-visible (UV-vis) spectroscopy studies, it is predicted that cobalt particles get electrostatically bound to the specific ion sites of ES, thereby modifying torsional degrees of freedom of the system. The applied field dependent magnetization study shows that the sample exhibits hysteresis loop with a minimal doping of 3 wt% of Co nanoparticles and increases with the amount of Co nanoparticles in ES due to dipolar interaction. The electron transport data show that with increase in Co wt% there is a gradual shift from ohmic to non-ohmic response to the sample bias, accompanied by opening of electrical hysteresis and an increased resistance. The non-linear response of higher doped systems has been attributed to the combination of direct and Fowler-Nordheim tunneling phenomena in these systems. Persistence of optical and transport properties of the polymer, with an introduction of magnetic moment in the system, envisages the system to be a fine magnetic semiconductor.  相似文献   

14.
In this work effect of the carrier fluid, hexane, on the magnetic properties of 4.7 nm sized FePt nanoparticles is investigated. Nanoparticles are synthesized by chemical method. Structural and magnetic characterizations confirmed that samples are monodispersed with disordered face centered cubic (fcc) crystal structure and, magnetically, exhibit two blocking behaviors; the first is at 27 K and second at 110 K. Carrier fluid of particles, hexane, is found to influence the blocking of 7% of the total magnetic moments in the system by freezing at low temperatures resulting in a two blocking phenomena even for nanoparticles that are monodispersed with narrow particle size distribution.  相似文献   

15.
The magnetization of iron oxide, nickel and cobalt ferrite nanoparticles was successfully measured by using a modular magnetometer. The magnetometer was built by combining stand-alone equipments usually available at most laboratories such as a Gaussmeter, an electromagnet, a current source and a linear actuator. The magnetic moment sensitivity attained was about 10−6 Am2 and the results were checked against measurements made on commercial VSM and SQUID magnetometers showing few percent errors.  相似文献   

16.
To tailor the interfacial interaction in magnetic metal nanoparticles filled polymer composites, the surfaces of iron, cobalt and nickel nanoparticles were grafted by irradiation polymerization. In the current report, effects of grafting conditions, including irradiation atmosphere, irradiation dose and monomer concentration, on the grafting reaction are presented. The interaction between the nanoparticles and the grafted polymer was studied by thermal analysis and X-ray photoelectron spectrometry. It was found that there is a strong interfacial interaction in the form of electrostatic bonding in the polymer-grafted nanoparticles. The dispersibility of the modified nanoparticles in chloroform was significantly improved due to the increased hydrophobicity.  相似文献   

17.
Magnetic nanoparticles have been prepared by various soft chemical methods including self-assembly. The bare or surface-modified particles find applications in areas such as hyperthermia treatment of cancer and magnetic field-assisted radioactive chemical separation. We present here some of the salient features of processing of nanostructured magnetic materials of different sizes and shapes, their properties and some possible applications. The materials studied included metals, metal-ceramic composites, and ferrites.  相似文献   

18.
In this work, we investigate dynamically the dipolar driven demagnetization process of magnetic multi-core particles by solving the Landau-Lifshitz equation for single-domain particles distributed on a three-dimensional sphere. We analyze the relaxation time in respect to different geometry and material parameters. Further we show that the demagnetization times differ from the behaviour of a single magnetic sphere in the case of low damping. To explain these dynamics nanoparticular systems of different dimensions are investigated. We show that deviations can be attributed to a confinement of the relaxation dynamics to a lower dimensional submanifold of the k-space.  相似文献   

19.
报道了聚丙烯胺稳定的球形和棒状铜纳米粒子的制备方法。在水溶液中空气条件下,通过水合肼还原二价铜离子到铜纳米粒子。聚丙烯胺的作用除稳定粒子防止聚集外,也可使粒子分散在水溶液中。该法的优点是在室温下,无需惰性气体保护,即可制备水溶液中分散的铜纳米粒子。紫外光谱和透射电镜监测了铜纳米粒子的生长过程。发现氢氧化钠的用量,聚丙烯胺浓度,反应时间等因素都影响到铜纳米粒子的组成,尺寸,形貌和聚集程度。氢氧化钠用量决定了制备粒子的组成成分是铜或氧化亚铜。所制备的球形铜纳米粒子表现出优良的表面增强拉曼散射活性。  相似文献   

20.
Mn–Zn ferrite nanoparticles (Mn1−xZnxFe2O4) are synthesized by a hydrothermal precipitation approach using metal sulfate solution and aqueous ammonia. The analysis methods of XRPD, TEM, TGA, and VSM are used to characterize the magnetic nanoparticles. Through the characterization of the precipitated nanoparticles, the effects of the reacting component proportions and preparation techniques on the Curie temperature, the magnetization, and the size distribution of Mn–Zn ferrite nanoparticles are discussed. Furthermore, the Mn–Zn ferrite nanoparticles are used to prepare ferrofluid. Variation of the magnetic properties of the ferrite nanoparticles with the composition content x of Zn and the magnetic moment of the nanoparticles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号