首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained.  相似文献   

2.
掺AlZnO纳米线阵列的光致发光特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
唐斌  邓宏  税正伟  韦敏  陈金菊  郝昕 《物理学报》2007,56(9):5176-5179
采用化学气相沉积方法,以金做催化剂,在Si (100)衬底上制备了掺AlZnO纳米线阵列.扫描电子显微镜(SEM)表征发现ZnO纳米线的直径在30nm左右.X射线衍射(XRD)图谱上只存在ZnO的(002)衍射峰,说明ZnO纳米线沿c轴择优取向.掺AlZnO纳米线阵列的室温光致发光(PL)谱中出现了3个带边激子发射峰:373nm,375nm,389nm.运用激子理论推算出掺AlZnO纳米线的禁带宽度为3.343eV ,束缚激子结合能为0.156eV;纯ZnO纳米线阵列PL谱中3个带边激子发射 关键词: 光致发光 化学气相沉积(CVD) 激子 ZnO纳米线阵列  相似文献   

3.
宋志明  赵东旭  郭振  李炳辉  张振中  申德振 《物理学报》2012,61(5):52901-052901
一维ZnO纳米结构由于具有比表面积大、室温下具有大激子结合能等特点而受到广泛关注. 但是如何实现纳米结构的器件一直是目前研究的一个挑战. 文章通过水热方法, 在玻璃衬底上实现了ZnO纳米线横向生长, 并制备出基于ZnO纳米线的金属-半导体-金属紫外探测器. 测量结果显示器件在365 nm处探测器的响应度达到5 A/W, 并且制备的探测器在空气中对紫外光照具有快速的响应, 其上升时间约4 s, 下降时间约5 s, 这与ZnO纳米线中的氧空位吸附和脱附水分子相关.  相似文献   

4.
Annealing at temperatures up to 1000 °C is shown to decrease band edge photoluminescence in bulk ZnO crystals and increase deep level-related emission. The surface roughens for anneals in the range of 600-800 °C as O is lost preferentially from the surface, but at 900 °C the morphology improves as excess Zn is also lost from the surface. Splitting of the peak in the rocking curve of the ZnO (0 0 2) plane after annealing at 900-1000 °C indicates that the substrate is a mosaic of two or more crystals oriented slightly differently from one another and we are detecting differences in orientation of some of the grains in different areas or small changes due to annealing. There was no significant change in bulk conductivity of the ZnO for anneals up to 1000 °C, suggesting that ion implantation followed by annealing may be an effective approach for doping in this.  相似文献   

5.
掺杂透明导电半导体薄膜的光电性能研究   总被引:4,自引:1,他引:4       下载免费PDF全文
掺杂氧化锌透明导电膜(AZO)是一种重要的光电子信息材料,其制备方法有真空蒸镀法、磁控溅射法,化学气相沉积和脉冲激光沉积法等。该文采用溶胶 凝胶(sol gel)工艺在普通玻璃基片上成功地制备出Al3+掺杂型ZnO透明导电薄膜。将这种薄膜在空气和真空中以不同的温度进行了退火处理,并对薄膜进行了XRD分析和光电性能研究。结果表明,所制备的薄膜为钎锌矿型结构,在c轴方向择优生长,真空退火有利于薄膜结晶状况的改善,并使薄膜的载流子浓度大幅度地增加而电阻率下降,并且真空退火对薄膜的透射率影响不大。  相似文献   

6.
The effects of NaCl electrolyte concentrations in the range 6-48 mM on the galvanic deposition of ZnO in Zn(Ac)2 electrolyte is presented. Effects of thermal annealing on their structural and optical properties have been investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) microanalysis and photoluminescence (PL). The results show that the increase of NaCl electrolyte concentration not only results in the increase of the diameter of ZnO nanorods, but also promotes the blue-shift of UV emission of ZnO. After air annealing at 200 °C, 300 °C and 400 °C, the UV emission is first enhanced then quenched sharply, while the visible emission tends to be enhanced tremendously. It can be ascribed to the new defect states introduced in ZnO after annealing at high temperature.  相似文献   

7.
Al-doped ZnO (AZO, ZnO:Al2O3 = 98:2 wt%) films are deposited on different substrates by an RF magnetron sputtering and subsequently annealed at three different conditions to investigate the microstructural, electrical, and optical properties. X-ray diffraction and scanning electron microscope results show that all the samples are polycrystalline and the samples rapid-thermal-annealed at 900 °C in an N2 ambient contain larger grains compared to the furnace-annealed samples. It is shown that the sample deposited at room temperature on the sapphire gives a resistivity of 5.57 × 10−4 Ω cm when furnace-annealed at 500 °C in a mixture of N2:H2 (9:1). It is also shown that the Hall mobility vs. carrier concentration (μ-n) relation is divided into two groups, depending on the annealing conditions, namely, either rapid-thermal annealing or furnace annealing. The relations are described in terms of either grain boundary scattering or ionized impurity scattering mechanism. In addition, the samples produce fairly high transmittance of 91-96.99% across the wavelength region of 400-1100 nm. The optical bandgaps of the samples increase with increasing carrier concentration.  相似文献   

8.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering at different substrate temperatures in Ar and H2 + Ar sputtering ambient. The effects of substrate temperature on the effectiveness of hydrogen incorporation in Al-doped ZnO films were investigated. The microstructural, electrical and optical properties of AZO films were systematically analyzed by surface profiler, X-ray diffractometry, scanning electron microscope, four-point probe measurement and UV/vis spectrophotometer. The XRD patterns and SEM pictures indicate that the crystallinity of AZO thin films was markedly improved with hydrogen incorporation at low substrate temperature, while the improvement of crystallinity was not an obvious change at high substrate temperature. The results also indicate that hydrogen incorporation has the stronger effectiveness on the transparent conductive properties of AZO films with the substrate temperature decreasing. The resistivity of the films decreases, especially for lower substrate temperatures, due to the incorporation of hydrogen atoms. These results suggest that substrate temperature should be controlled to the lower level to effectively reduce resistivity without detriment to transmittance of AZO thin films when hydrogen is incorporated.  相似文献   

9.
Al-doped ZnO (AZO) films are prepared by sol-gel method with a proper annealing procedure. For the first time, we find that the heating rate which is normally neglected during the post annealing process plays a significant role in improving AZO properties. The AZO film with nanorod structure is obtained by using a rapid heating rate. The AZO nanorods can provide a faster conduction pathway for charge transport due to the high crystal quality and thus enhance the conductivity of the film significantly. After hydrogen treatment, the AZO nanorod film exhibits a minimum resistivity of 1.4 × 10−3 Ω cm. This approach to the preparation of AZO nanorods by a simple rapid annealing process may be helpful for the development of sol-gel-derived TCO films.  相似文献   

10.
The geometric, energetic, electronic structures and optical properties of ZnO nanowires (NWs) with hexagonal cross sections are investigated by using the first-principles calculation of plane wave ultra-soft pseudo-potential technology based on the density functional theory (DFT). The calculated results reveal that the initial Zn-O double layers merge into single layers after structural relaxations, the band gap and binding energies decrease with the increase of the ZnO nanowire size. Those properties show great dimension and size dependence. It is also found that the dielectric functions of ZnO NWs have different peaks with respect to light polarization, and the peaks of ZnO NWs exhibit a significant blueshift in comparison with those of bulk ZnO. Our results gives some reference to the thorough understanding of optical properties of ZnO, and also enables more precise monitoring and controlling during the growth of ZnO materials to be possible.  相似文献   

11.
ZnO nanowires (NWs) with different diameters were obtained by controlling the particles of ZnO sub-layer (SL) exploring hydrothermal method; the diameter of the epitaxial NWs could be tuned from 60 to 146 nm when using SL with a thickness of 70 nm. The thickness of the SL would influence the orientation of the NWs. The top agglomerate NWs could be formed on the SL with a thickness of 10 nm, and the NWs with better orientation were obtained using SL with a thickness of 70 nm. Well aligned ZnO NWs grew perpendicular to the completely stress released SL. The diameter of the NWs was also greatly influenced by the solution concentration; thus ultra fine (diameter∼11 nm) ZnO NWs were obtained through adjusting the solution concentration to 0.001 mol/L. Through our research, we also found that the growth rate of the NWs could also be influenced by the different polarity surface of the SL. In other words, the size of the ZnO NWs could be tuned exactly under optimal conditions.  相似文献   

12.
The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 °C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 °C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 °C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A0, X) transition, where the acceptor is possibly the 2VZn-AsZn complex, with an activation energy EA in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain.  相似文献   

13.
Single crystal ZnO nanowires diffused with europium (Eu) from a solid source at 900 °C for 1 h or doped with Eu during growth have been characterized. The ZnO nanowires were grown by chemical vapor deposition on Si substrates employing Au as a catalyst. The diameter of the resulting nanowires was 200 nm with a length of 1 μm. Photoluminescence spectra excited by a He–Cd laser at room temperature showed the green luminescence at 515 nm in Eu-diffused nanowires. A small red shift of near-band-edge emission of ZnO nanowires was observed in the diffused wires, but sharp emission from Eu3 ions was not present. Transmission electron microscopy shows crystalline Eu2O3 formation on the diffused nanowire surface, which forms a coaxial heterostructure system. When Eu was incorporated during the nanowire growth, the sharp 5DO7F2 transition of the Eu3+ ion at around 615 nm was observed.  相似文献   

14.
ZnO nanoparticles (NPs) have been successfully synthesized by the simple solution method at low temperature. The effects of annealing temperature on the structure and optical properties of ZnO NPs were investigated in detail by X-ray diffraction, transmission electron microscopy (TEM), ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) measurements. As the annealing temperature was increased above 180 °C the particles morphology evolved from spherical to hexagonal shape, indicating that the average particle size increased from 11 nm to 87 nm. The UV-vis and PL spectra showed a red-shift from 3.62 to 3.33 eV when the annealing temperature was increased.  相似文献   

15.
Principal role of substrate types on the nonlinear optical properties of Au NP was investigated. Third harmonic generation (THG) studies were carried out for Au NP deposited on the Al-doped ZnO (AuNP/AZO) and Ga-doped ZnO (AuNP/GZO) substrates at fundamental wavelength of 20 ns Er:glass laser (generating at 1540 nm wavelength) during photostimulation by the 532 nm 15 ns laser pulses. Sizes of Au NP were 5 nm, 10 nm, 20 nm, and 30 nm. The output signal was registered at 513 nm. The photoinduced power density was increased from 0 up to 800 MW/cm2. So in our work we explore the role of the substrate on the optically stimulated non-linear optical properties during simultaneous photo stimulation near the inter-band transition. The results were studied depending on the type of substrate and the sizes of the deposited nanoparticles. The analysis was done within a framework of interaction between the photoinduced light and SPR wavelengths. Control of the photoinduced temperature was done.  相似文献   

16.
Transparent conducting oxide (TCO) thin films such as SnO2, In2O3, and Cd2SnO4, have been used extensively as sensor devices, surface acoustic wave devices, coating to heat glass windows and transparent electrodes for solid state display devices, solar cells[1,2] because of their high optical transparency in the visible range, infrared reflec-tance and low d.c. resistivity. Although SnO2 film was developed early, nowadays Sn-doped In2O3 (ITO) films are the predominant TCO thin film in …  相似文献   

17.
Recently, Zhang et al. have published a paper [Zhang, Z.H., Qi, X.Y., Jian, J.K., Duan, X.F., 2006. Micron 37, 229–233] in which – among others – the determination of the optical properties of a semiconductor by use of electron energy-loss spectroscopy (EELS) is performed with 200 keV electrons and a collection angle of only 0.3 mrad. The authors do not take into account relativistic effects such as Čerenkov losses (CL) before performing Kramers–Kronig Analysis (KKA) on the EELS spectra obtaining erroneous results. Although the positions of features within the optical properties are consistant with the simulated ones, the relative hights or absolute values differ a lot.  相似文献   

18.
基于氧化锌纳米线的紫外发光二极管   总被引:2,自引:0,他引:2       下载免费PDF全文
孙晖  张琦锋  吴锦雷 《物理学报》2007,56(6):3479-3482
构建了基于n-ZnO纳米线/p-Si异质结的紫外发光二极管.ZnO纳米线准阵列采用水热法生长于重掺p型Si片上.此法简易,反应温度低,易于大规模生产;其产物ZnO纳米线结晶良好,以c轴为优势取向,光激发下的紫外荧光发射很强.二极管的电学接触采用聚合物填充的In阴极或以氧化铟锡(ITO)玻璃紧压形成阴极.它们的I-V特性体现出良好的二极管性质.在正向偏置电压驱动下,构建的发光二极管可稳定发射波长在387nm的较强的近紫外光和较弱的绿光. 关键词: ZnO纳米线 异质结 电致发光 水热法  相似文献   

19.
The development of cost-effective and low-temperature synthesis techniques for the growth of high-quality zinc oxide thin films is paramount for fabrication of ZnO-based optoelectronic devices, especially ultraviolet (UV)-light-emitting diodes, lasers and detectors. We demonstrate that the properties, especially UV emission, observed at room temperature, of electrodeposited ZnO thin films from chloride medium (at 70 °C) on fluor-doped tin oxide (FTO) substrates is strongly influenced by the post-growth thermal annealing treatments. X-ray diffraction (XRD) measurements show that the films have preferably grown along (0 0 2) direction. Thermal annealing in the temperature range of 150-400 °C in air has been carried out for these ZnO thin films. The as-grown films contain chlorine which is partially removed after annealing at 400 °C. Morphological changes upon annealing are discussed in the light of compositional changes observed in the ZnO crystals that constitute the film. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments due to the reducing of defects levels and of chlorine content. The transmission and absorption spectra become steeper and the optical bandgap red shifted to the single-crystal value. These findings demonstrate that electrodeposition have potential for the growth of high-quality ZnO thin films with reduced defects for device applications.  相似文献   

20.
The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160 °C caused variations in the elastic modulus, internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号