共查询到20条相似文献,搜索用时 0 毫秒
1.
Hao Tong Zhonghua DengZhuguang Liu Changgang HuangJiquan Huang Hai Lan Chong Wang Yongge Cao 《Applied Surface Science》2011,257(11):4906-4911
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained. 相似文献
2.
Annealing at temperatures up to 1000 °C is shown to decrease band edge photoluminescence in bulk ZnO crystals and increase deep level-related emission. The surface roughens for anneals in the range of 600-800 °C as O is lost preferentially from the surface, but at 900 °C the morphology improves as excess Zn is also lost from the surface. Splitting of the peak in the rocking curve of the ZnO (0 0 2) plane after annealing at 900-1000 °C indicates that the substrate is a mosaic of two or more crystals oriented slightly differently from one another and we are detecting differences in orientation of some of the grains in different areas or small changes due to annealing. There was no significant change in bulk conductivity of the ZnO for anneals up to 1000 °C, suggesting that ion implantation followed by annealing may be an effective approach for doping in this. 相似文献
3.
Al-doped ZnO (AZO, ZnO:Al2O3 = 98:2 wt%) films are deposited on different substrates by an RF magnetron sputtering and subsequently annealed at three different conditions to investigate the microstructural, electrical, and optical properties. X-ray diffraction and scanning electron microscope results show that all the samples are polycrystalline and the samples rapid-thermal-annealed at 900 °C in an N2 ambient contain larger grains compared to the furnace-annealed samples. It is shown that the sample deposited at room temperature on the sapphire gives a resistivity of 5.57 × 10−4 Ω cm when furnace-annealed at 500 °C in a mixture of N2:H2 (9:1). It is also shown that the Hall mobility vs. carrier concentration (μ-n) relation is divided into two groups, depending on the annealing conditions, namely, either rapid-thermal annealing or furnace annealing. The relations are described in terms of either grain boundary scattering or ionized impurity scattering mechanism. In addition, the samples produce fairly high transmittance of 91-96.99% across the wavelength region of 400-1100 nm. The optical bandgaps of the samples increase with increasing carrier concentration. 相似文献
4.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering at different substrate temperatures in Ar and H2 + Ar sputtering ambient. The effects of substrate temperature on the effectiveness of hydrogen incorporation in Al-doped ZnO films were investigated. The microstructural, electrical and optical properties of AZO films were systematically analyzed by surface profiler, X-ray diffractometry, scanning electron microscope, four-point probe measurement and UV/vis spectrophotometer. The XRD patterns and SEM pictures indicate that the crystallinity of AZO thin films was markedly improved with hydrogen incorporation at low substrate temperature, while the improvement of crystallinity was not an obvious change at high substrate temperature. The results also indicate that hydrogen incorporation has the stronger effectiveness on the transparent conductive properties of AZO films with the substrate temperature decreasing. The resistivity of the films decreases, especially for lower substrate temperatures, due to the incorporation of hydrogen atoms. These results suggest that substrate temperature should be controlled to the lower level to effectively reduce resistivity without detriment to transmittance of AZO thin films when hydrogen is incorporated. 相似文献
5.
Al-doped ZnO (AZO) films are prepared by sol-gel method with a proper annealing procedure. For the first time, we find that the heating rate which is normally neglected during the post annealing process plays a significant role in improving AZO properties. The AZO film with nanorod structure is obtained by using a rapid heating rate. The AZO nanorods can provide a faster conduction pathway for charge transport due to the high crystal quality and thus enhance the conductivity of the film significantly. After hydrogen treatment, the AZO nanorod film exhibits a minimum resistivity of 1.4 × 10−3 Ω cm. This approach to the preparation of AZO nanorods by a simple rapid annealing process may be helpful for the development of sol-gel-derived TCO films. 相似文献
6.
Z. Guo C. Andreazza-Vignolle P. AndreazzaT. Sauvage D.X. ZhaoY.C. Liu B. YaoD.Z. Shen X.W. Fan 《Physica B: Condensed Matter》2011,406(11):2200-2205
ZnO nanowires (NWs) with different diameters were obtained by controlling the particles of ZnO sub-layer (SL) exploring hydrothermal method; the diameter of the epitaxial NWs could be tuned from 60 to 146 nm when using SL with a thickness of 70 nm. The thickness of the SL would influence the orientation of the NWs. The top agglomerate NWs could be formed on the SL with a thickness of 10 nm, and the NWs with better orientation were obtained using SL with a thickness of 70 nm. Well aligned ZnO NWs grew perpendicular to the completely stress released SL. The diameter of the NWs was also greatly influenced by the solution concentration; thus ultra fine (diameter∼11 nm) ZnO NWs were obtained through adjusting the solution concentration to 0.001 mol/L. Through our research, we also found that the growth rate of the NWs could also be influenced by the different polarity surface of the SL. In other words, the size of the ZnO NWs could be tuned exactly under optimal conditions. 相似文献
7.
The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 °C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 °C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 °C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A0, X) transition, where the acceptor is possibly the 2VZn-AsZn complex, with an activation energy EA in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain. 相似文献
8.
ZnO nanoparticles (NPs) have been successfully synthesized by the simple solution method at low temperature. The effects of annealing temperature on the structure and optical properties of ZnO NPs were investigated in detail by X-ray diffraction, transmission electron microscopy (TEM), ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) measurements. As the annealing temperature was increased above 180 °C the particles morphology evolved from spherical to hexagonal shape, indicating that the average particle size increased from 11 nm to 87 nm. The UV-vis and PL spectra showed a red-shift from 3.62 to 3.33 eV when the annealing temperature was increased. 相似文献
9.
Principal role of substrate types on the nonlinear optical properties of Au NP was investigated. Third harmonic generation (THG) studies were carried out for Au NP deposited on the Al-doped ZnO (AuNP/AZO) and Ga-doped ZnO (AuNP/GZO) substrates at fundamental wavelength of 20 ns Er:glass laser (generating at 1540 nm wavelength) during photostimulation by the 532 nm 15 ns laser pulses. Sizes of Au NP were 5 nm, 10 nm, 20 nm, and 30 nm. The output signal was registered at 513 nm. The photoinduced power density was increased from 0 up to 800 MW/cm2. So in our work we explore the role of the substrate on the optically stimulated non-linear optical properties during simultaneous photo stimulation near the inter-band transition. The results were studied depending on the type of substrate and the sizes of the deposited nanoparticles. The analysis was done within a framework of interaction between the photoinduced light and SPR wavelengths. Control of the photoinduced temperature was done. 相似文献
10.
C.J. Pan C.W. Chen J.Y. Chen P.J. Huang G.C. Chi C.Y. Chang F. Ren S.J. Pearton 《Applied Surface Science》2009,256(1):1139-190
Single crystal ZnO nanowires diffused with europium (Eu) from a solid source at 900 °C for 1 h or doped with Eu during growth have been characterized. The ZnO nanowires were grown by chemical vapor deposition on Si substrates employing Au as a catalyst. The diameter of the resulting nanowires was 200 nm with a length of 1 μm. Photoluminescence spectra excited by a He–Cd laser at room temperature showed the green luminescence at 515 nm in Eu-diffused nanowires. A small red shift of near-band-edge emission of ZnO nanowires was observed in the diffused wires, but sharp emission from Eu3 ions was not present. Transmission electron microscopy shows crystalline Eu2O3 formation on the diffused nanowire surface, which forms a coaxial heterostructure system. When Eu was incorporated during the nanowire growth, the sharp 5DO–7F2 transition of the Eu3+ ion at around 615 nm was observed. 相似文献
11.
CHEN Yanwei YU Wenhua & LIU Yichun . Centre for Advanced Optoelectronic Functional Material Research Northeast Normal University Changchun China . Key Laboratory of Excited State Processes Changchun Institute of Optics Fine Mechanics Physics Chinese Academy of Sciences Changchun China 《中国科学G辑(英文版)》2004,47(5):588-596
Transparent conducting oxide (TCO) thin films such as SnO2, In2O3, and Cd2SnO4, have been used extensively as sensor devices, surface acoustic wave devices, coating to heat glass windows and transparent electrodes for solid state display devices, solar cells[1,2] because of their high optical transparency in the visible range, infrared reflec-tance and low d.c. resistivity. Although SnO2 film was developed early, nowadays Sn-doped In2O3 (ITO) films are the predominant TCO thin film in … 相似文献
12.
O. Lupan T. Pauporté L. Chow B. Viana L.K. Ono H. Heinrich 《Applied Surface Science》2010,256(6):1895-1907
The development of cost-effective and low-temperature synthesis techniques for the growth of high-quality zinc oxide thin films is paramount for fabrication of ZnO-based optoelectronic devices, especially ultraviolet (UV)-light-emitting diodes, lasers and detectors. We demonstrate that the properties, especially UV emission, observed at room temperature, of electrodeposited ZnO thin films from chloride medium (at 70 °C) on fluor-doped tin oxide (FTO) substrates is strongly influenced by the post-growth thermal annealing treatments. X-ray diffraction (XRD) measurements show that the films have preferably grown along (0 0 2) direction. Thermal annealing in the temperature range of 150-400 °C in air has been carried out for these ZnO thin films. The as-grown films contain chlorine which is partially removed after annealing at 400 °C. Morphological changes upon annealing are discussed in the light of compositional changes observed in the ZnO crystals that constitute the film. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments due to the reducing of defects levels and of chlorine content. The transmission and absorption spectra become steeper and the optical bandgap red shifted to the single-crystal value. These findings demonstrate that electrodeposition have potential for the growth of high-quality ZnO thin films with reduced defects for device applications. 相似文献
13.
Quasi-crystal aluminum-doped zinc oxide (AZO) films were prepared by in situ radio frequency (RF) magnetron sputtering (sputtering without annealing) on glass substrates. The influence of deposition parameters on the optoelectronic and structural properties of the in situ deposited quasi-crystal AZO films was investigated in order to compare resulting samples. X-ray diffraction (XRD) patterns show that the quasi-crystal AZO thin films have excellent crystallization improved with increase of the RF power and substrate temperature, with an extremely preferential c-axis orientation exhibit sharp and narrow XRD pattern similar to that of single-crystal. Field emission scanning electron microscopy (FESEM) images show that quasi-crystal AZO thin films have uniform grains and the grain size increase with the increase of RF power and substrate temperature. Craters of irregular size with the columnar structure are observed in the quasi-crystal AZO thin films at a lower substrate temperature while many spherical shaped grains appeared at a higher substrate temperature. The average optical transmittance of all the quasi-crystal AZO films was over 85% in the 400-800 nm wavelength range. The resistivity of 4.176 × 10−4 Ω cm with the grain size of 76.4891 nm was obtained in the quasi-crystal AZO thin film deposited at 300 °C, under sputtering power of 140 W. 相似文献
14.
ZnO is a well known material; however, the research interest in this material is still high enough because ZnO is one of the materials with the most potential for optoelectronics due to its promising properties of high conductivity as well as good transparency. In this work, aluminum doped zinc oxide films (ZnO:Al) were deposited by RF magnetron sputtering on glass and silicon substrates with different deposition times of 2, 3 and 4 h. The aim of this work is the study of the deposition time effect on the properties of ZnO:Al films. It is shown that films grow with the hexagonal c-axis perpendicular to the substrate surface. The morphological characteristics show a granular and homogenous surface and the cristallinity of the films is enhanced with increased deposition time. The deposited films show good optical transmittance (80%–90%) in the visible and near infrared spectrum. The calculated band gap is about 3.3 eV. The electrical ZnO:Al/Si(p) junction properties were investigated using the Capacitance–Voltage (C–V) dependence. Calculations of the built-in potential from classical 1/C2–V characterization give values between 0.54 and 0.71 V. 相似文献
15.
Optical and electrical characteristics of Al-doped ZnO thin films prepared by aqueous phase deposition 总被引:1,自引:0,他引:1
Transparent conducting Al-doped ZnO (AZO) thin films have been deposited by sol-gel route. Starting from an aqueous solution of zinc acetate by adding aluminum chloride as dopant, a c-axis oriented polycrystalline ZnO thin film 100 nm in thickness could be spin-coated on glass substrates via a two-step annealing process under reducing atmosphere. The effects of thermal annealing and dopant concentration on the structural, electrical and optical properties of AZO thin films were investigated. The post-treated AZO films exhibited a homogenous dense microstructure with grain sizes less than 10 nm as characterized by SEM photographs. The annealing atmosphere has prominent impact on the crystallinity of the films which will in turn influence the electrical conductivity. By varying the doping concentrations, the optical and electrical properties could be further adjusted. An optimal doping concentration of Al/Zn = 2.25 at.% was obtained with minimum resistivity of 9.90 × 10−3 Ω-cm whereas the carrier concentration and mobility was 1.25 × 1020 cm−3 and 5.04 cm2 V−1 s−1, respectively. In this case, the optical transmittance in the visible region is over 90%. 相似文献
16.
K. Grasza E. usakowska P. Skupinski H. Sakowska A. Mycielski 《Superlattices and Microstructures》2007,42(1-6):290
Zinc oxide crystals were grown by Chemical Vapor Transport using Contactless Crystal Growth technique. After X-ray examination the 8 off-axis oriented slices were polished using alumina powder followed by a mixture of oxides. The mechanical polishing was followed by chemo-mechanical polishing using colloidal silica in water and supplemented by thermal annealing in an air atmosphere. The range of temperature was between 770 and 1070 C, time of annealing ranged up to 160 h. The quality of surfaces was studied using atomic force microscopy. A wide spectrum of surface morphology was observed. The morphology was dependent on the annealing conditions and additionally on the quality of chemo-mechanical polishing and crystallographic orientation of the surfaces. It was found possible to obtain the lowest RMS surface roughness factor in extremely different annealing conditions. The best annealing procedure for surface improvement was investigated. 相似文献
17.
Jin ZhangWenxiu Que Qiaoying JiaXiangdong Ye Yucheng Ding 《Applied Surface Science》2011,257(23):10134-10140
ZnO nanowire (NW) arrays are assembled on the Al-doped ZnO (AZO) seed layer by a hydrothermal process. Effects of the temperature and growth time of the hydrothermal process on morphological and photoluminescence properties of the as-assembled ZnO NW arrays are characterized and studied. Results indicate that the length and diameter of the ZnO NWs increase with a lengthening of the growth time at 80 °C and the hydrothermal temperature has a significant effect on the growth rate and the photoluminescence properties of the ZnO NW arrays. The patterned AZO seed layer is fabricated on a silicon substrate by combining a sol-gel process with an electron-beam lithography process, as well as a surface fluorination technique, and then the ZnO NW arrays are selectively grown on those patterned regions of the AZO seed layer by the hydrothermal process. Room-temperature photoluminescence spectra of the patterned ZnO NW arrays shows that only a strong UV emission at about 380 nm is observed, which implies that few crystal defects exist inside the as-grown ZnO NW arrays. 相似文献
18.
J.P. Kar S.N. DasJ.H. Choi T.I. LeeJ. Seo T. LeeJ.M. Myoung 《Applied Surface Science》2011,257(11):4973-4977
Vertically aligned, c-axis oriented zinc oxide (ZnO) nanowires were grown on Si substrate by metal organic chemical vapor deposition (MOCVD) technique, where sputtered aluminum nitride (AlN) film was used as an intermediate layer and thermally evaporated barium fluoride (BaF2) film as a sacrificial layer. The aspect ratio and density of the nanowires were also varied using only Si microcavity without any interfacial or sacrificial layer. The UV detectors inside the microcavity have shown the higher on-off current ratio and fast photoresponse characteristics. The photoresponse characteristics were significantly varied with the aspect ratio and the density of nanowires. 相似文献
19.
XPS depth profiles were used to investigate the effects of rapid thermal annealing under varying conditions on the structural, magnetic and optical properties of Ni-doped ZnO thin films. Oxidization of metallic Ni from its metallic state to two-valence oxidation state occurred in the film annealed in air at 600 °C, while reduction of Ni2+ from its two-valence oxidation state to metallic state occurred in the film annealed in Ar at 600 and 800 °C. In addition, there appeared to be significant diffusion of Ni from the bottom to the top surface of the film during annealing in Ar at 800 °C. Both as-deposited and annealed thin films displayed obvious room temperature ferromagnetism (RTFM) which was from metallic Ni, Ni2+ or both with two distinct mechanisms. Furthermore, a significant improvement in saturation magnetization (Ms) in the films was observed after annealing in air (Ms = 0.036 μB/Ni) or Ar (Ms = 0.033 μB/Ni) at 600 °C compared to that in as-deposited film (Ms = 0.017 μB/Ni). An even higher Ms value was observed in the film annealed in Ar at 800 °C (Ms = 0.055 μB/Ni) compared to that at 600 °C mainly due to the diffusion of Ni. The ultraviolet emission of the Ni-doped ZnO thin film was restored during annealing in Ar at 800 °C, which was also attributed to the diffusion of Ni. 相似文献
20.
Prabhakar Rai Rizwan Khan Rafiq Ahmad Yoon-Bong Hahn In-Hwan Lee Yeon-Tae Yu 《Current Applied Physics》2013,13(8):1769-1773
The ZnO NWs were applied as effective material for the fabrication of ethanol (C2H5OH) and carbon monoxide (CO) gas sensor. The ZnO NWs were grown by thermal evaporation techniques on non-catalytic Si (100) substrates. The average width and length of ZnO NWs was 60 nm and 20 μm, respectively and they were single crystalline in nature. The maximum response was 51.64 at 300 °C for 1000 ppm of CO gas, while 104.23 at 400 °C for 250 ppm of ethanol gas. The response of ZnO NWs was very high for ethanol compared to the CO, whereas the recovery time for ethanol was very poor compare to CO gas. The response of ZnO NWs was about 25 times higher for ethanol compare to CO, at 400 °C for 100 ppm of each gas. The high response for ethanol is related to electron donating effect of ethanol (10e?) which was higher than the CO gas (2e?). The high response of ZnO NWs was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion. 相似文献