首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Extremophiles are the group of organisms that are far overlooked for exploring novel biomaterials in the field of material science and bionanotechnology. Extremophilic bacterial‐sulfated exopolysaccharide, mauran (MR), is employed for the bioreduction and passivation of gold nanoparticles (AuNps) to enhance the biocompatibility of AuNps and used for photothermal ablation of cancer cells. Here, various concentrations of MR solution are tested for the reduction of HAuCl4 solution in the presence as well as in the absence of an external reducing agent, to produce mauran‐gold nanoparticles (MRAu Nps). These biocompatible nanocomposites are treated with cancer cell lines under in vitro conditions and NIR irradiated for complete ablation. MRAu Nps‐treated cancer cells on immediate exposure to infrared radiation from a femtosecond pulse laser of operating wavelength 800 nm are subjected to hyperthermia causing cell death. Biocompatible MR stabilization could fairly reduce the cytotoxicity caused by bare AuNps during biomedical applications. Application of a biocompatible polysaccharide from extremophilic bacterial origin for reduction and passivation of AuNps and used for a biomedical purpose is known to be first of its kind in bionanofusion studies.  相似文献   

2.
Novel synthesis of amine-stabilized Au–Ag alloy nanoparticles with controlled composition has been devised using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. The composition of Au–Ag alloy nanoparticles was readily controlled by varying the initial relative amount of HAuCl4 and AgNO3. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of Ag+ in the presence of Cl from the gold salt was avoided. On this basis, the relatively high concentrations of HAuCl4 and AgNO3 salts were used for the fabrication of Au–Ag alloy nanoparticles. The PEI thus plays triple roles in this study that include the co-reducing agents for HAuCl4 and AgNO3, the stabilizing agents for Au–Ag alloy nanoparticles, and even the dissolving agents for AgCl. As a novel material for use in catalysis, the Au–Ag alloy nanoparticles including pure Au and Ag samples were exploited as catalysts for the reduction of 4-nitrophenol in the presence of NaBH4. As the Au content was increased in the Au–Ag alloy nanoparticles, the rate constant of the reduction was exponentially increased from pure Ag to pure Au.  相似文献   

3.
Abstract  The anisotropic gold and spherical–quasi-spherical silver nanoparticles (NPs) were synthesized by reducing aqueous chloroauric acid (HAuCl4) and silver nitrate (AgNO3) solution with the extract of phyllanthin at room temperature. The rate of reduction of HAuCl4 is greater than the AgNO3 at constant amount of phyllanthin extract. The size and shape of the NPs can be controlled by varying the concentration of phyllanthin extract and thereby to tune their optical properties in the near-infrared region of the electromagnetic spectrum. The case of low concentration of extract with HAuCl4 offers slow reduction rate along with the aid of electron-donating group containing extract leads to formation of hexagonal- or triangular-shaped gold NPs. Transmission electron microscopy (TEM) analysis revealed that the shape changes on the gold NPs from hexagonal to spherical particles with increasing initial concentration of phyllanthin extract. The Fourier transform infrared spectroscopy and thermogravimetric analyses reveal that the interaction between NPs and phyllanthin extract. The cyclic voltammograms of silver and gold NPs confirms the conversion of higher oxidation state to zero oxidation state. Graphical abstract  Anisotropic gold and silver nanoparticles were synthesized by a simple procedure using phyllanthin extract as reducing agent. The rate of bioreduction of AgNO3 is lower than the HAuCl4 at constant concentration of phyllanthin extract. The required size of the nanoparticles can be prepared by varying the concentration of phyllanthin with AgNO3 and HAuCl4.   相似文献   

4.
We report on the use of poly(allylamine) hydrochloride (PAH) as a reducing agent for the controlled formation of gold nanoparticles (AuNPs) in the size range of 5–50 nm. The formation of AuNPs using this polymer matrix allows for the AuNPs to be imbedded in the polymer matrix, once formed. The kinetics of AuNP formation are shown to be pseudo first-order in [HAuCl4] at room temperature. The kinetics of AuNP formation are controlled by the ratio of reducing agent to HAuCl4 as well as the overall concentration of the PAH and HAuCl4. Additionally, at low PAH:HAuCl4 mole ratios, the plasmon resonance wavelength can be controlled through the ratio of the reactants. This plamson resonance shift is shown to be related to AuNP size by means of TEM imaging data on the AuNPs.  相似文献   

5.
Dispersed-well FePt nanoparticles with particle size ~5 nm have been prepared by hydrazine hydrate reduction of H2PtCl6·6H2O and FeCl2·4H2O in ethanol–water system. By employing as-synthesized FePt nanoparticles, the monolayer can be formed by LB Technique. The structural, magnetic properties and electrochemical properties of FePt monolayer were respectively studied by XRD, TEM, VSM and CHI 820 electrochemical workstation. The as-synthesized particle has a chemically disordered fcc structure and can be transformed into chemically ordered fct structure after annealing treatment above 400°C. The coercivity of ordered fct FePt phase can be up to 2515Oe. CVs of 0.5 M H2SO4/0.5M CH3OH on GCE modified with FePt nanoparticles monolayer films illustrate that the as-synthesized FePt is a kind of active electrochemical catalyst.  相似文献   

6.
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01–68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm−2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn’t cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.  相似文献   

7.
Ronghua Li  Min Li 《Ionics》2009,15(2):215-219
LiMn2O4 spinel cathode was synthesized by the sol–gel method by using glycolic acid as a chelating agent. The sample exhibited a pure cubic spinel structure without any impurities in the X-ray diffraction (XRD) patterns. The result of the electrochemical performances on the sample compared to those of electrodes based on LiMn2O4 spinel synthesized by solid state. LiMn2O4 synthesized by glycolic acid-assisted sol–gel method improves the cycling stability of electrode. The capacity retention of sol–gel-synthesized LiMn2O4 was about 90• after 100 cycles between 3.0 and 4.4 V at room temperature. The electrochemical performance of the LiMn2O4 (sol–gel) and LiMn2O4 (solid state) were investigated under 40• between 3.0 and 4.4 V. XRD results of the cathode material after 50 cycles at 40• revealed that LiMn2O4 (sol–gel) could effectively suppress the LiMn2O4 dissolving of into electrolyte and resulted in a better stability.  相似文献   

8.
Nanoball-structured ferromagnetic zinc ferrite nanocrystals (ZnFe2O4 NPs) entrapped with graphitic-carbon nitride (g-C3N4) was produced via straightforward and facile sonochemical synthetical technique (titanium probe; 100 W/cm2 and 50 KHz). The morphological (SEM), elemental (EDS), diffraction (XRD), XPS, and electrochemical studies (CV) have been carry out to verify the nanostructure and shape of the materials. The ZnFe2O4 NPs/g-C3N4 electrode (GCE) was constructed which displayed outstanding electrochemical ability towards toxic 4-nitrophenol (NTP). A sensitive, selective, reproducible, and durable electrochemical NTP sensor was developed by ZnFe2O4 NPs/g-C3N4 modified electrode. The modified sensor exhibited a high sensitivity and 4.17 nanomolars of LOD. It’s greater than the LOD of previously reported NTP modified sensors. The real-time experiments of the modified electrochemical (ZnFe2O4 NPs/g-C3N4 electrode) sensor were successfully explained in various water (river and drinking) samples and its showed high standard recoveries. Therefore, sonochemical synthetical method and fabrication of modified electrode were developed this work based on environmental analysis of NTP sensor.  相似文献   

9.
Narrow-dispersed gold nanospheres, regular single-crystal nanoplates and nanobulks were prepared, respectively, by reducing HAuCl4 within a hydrogel system under UV irradiation. The formation of gold products with different geometric shape and size was found to depend on both the microenvironment of the gel matrix and the initial concentration of HAuCl4. The resultant gold particles were investigated by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersion X-ray spectroscopy. Electronic Supplementary Material The online version of this article at (doi: ) contains supplementary material, which is available to authorised users.  相似文献   

10.
Hollow spheres and nanospheres of Au have been prepared by a simple reaction of HAuCl4·4H2O, NaOH and (NH2OH)2·H2SO4 in the presence of gelatin. The role of gelatin and the effect of the temperature of the reaction in producing the spherical particles of Au are discussed. The products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy and UV–Vis absorption spectroscopy. The sizes of the nanospheres of Au were estimated by the Debye–Scherrer formula according to the XRD spectrum. PACS  81.05.Bx; 81.05.Rm; 81.07.-b; 81.16.Be; 81.20.Fw  相似文献   

11.
The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti–6Al–4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank’s solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50–100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti–6Al–4V surface, serving to improve the bioimplant corrosion resistance.  相似文献   

12.
This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10−10 to 1.0 × 10−6 mol/L, and a detection limit of 3.1 × 10−11 mol/L.  相似文献   

13.
M. M. Lohrengel  O. Genz 《Ionics》1995,1(4):304-310
The reversible redox process of electrochemically formed conducting polymers (poly-aniline, poly-3-methylthiophene, poly-carbazole, and poly-bithiophene) was investigated by current transients of potentiostatic steps, impedance spectroscopy, and by mass transients from the electrochemical quartz micro balance. The polymer film thickness (18 nm ≤ d ≤ 6700 nm) and the electrolyte (aqueous H2SO4, HClO4, trichloroacetic acid, and p-toluenesulphonic acid, or non-aqueous acetonitrile/Et4N ClO4) was varied. The redox process is a complex sequence of steps. The oxidation starts with a field supported, non-homogeneous formation of conducting pathes. 5 to 10% of the total charge are sufficient to convert the polymer to the conducting state. Up to 50% of the total charge are consumed by a mechanism which involves proton transport. The further redox process requires a transport of anions from the electrolyte. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

14.
We report the reversible micro-structuring of a synthetic rubber polymer (cis1,4-polybutadiene (PB)) by femtosecond laser illumination. Visco-elastic relaxation of the optically damaged region was observed. The recovery time, typically 102–104 ms, can be varied by changing the irradiation pulse energy. Multi-shot-induced damage recovers on the much longer scale of 101–102 s. It was found that the doping of PB by 4 wt. % of pentazadiene ([4-NO2]–phenyl–N=N–N(C3H7)–N=N–phenyl–[4-NO2]) reduces the threshold of light-induced photo-modification by 20%. This is explained by photo-induced (homolytic) cleavage of the pentazadiene bonds and formation of gaseous N2, which facilitates material failure at the irradiated spot. The recovery of optical transmission can be applied to optical memory, optical and micro-mechanical applications. The underlying mechanism of the phenomenon is discussed in terms of anelastic α- and β-relaxation (polymer backbone and chains/coils relaxation, respectively). Received: 11 October 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +81-88/656-7598, E-mail: misawa@eco.tokushima-u.ac.jp  相似文献   

15.
We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (ks = 1.16 s−1) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 μM. The lowest detection limit (LoD) was calculated to be 1 μM and sensitivity of 0.81 μA μM−1 cm−2. A 100-fold excess of various ions, such as Ca2+, Na+, K+, Cl, I, CO32−, NO3, NH4+ and SO42− did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.  相似文献   

16.
A powdered compound constituted by over the 95% of talc Mg3Si4O10(OH)2 with MgCO3 and CaMg(CO3)2 as minor phases was mechanically deformed by compaction and shear to a nanosized particulate (crystallite size ~5 nm) in a specifically built planetary ball mill. The mechanical milling was conducted in a controlled thermodynamic environment (25 °C and 0.13 Pa) by using low mechanical load to minimise amorphisation of the material. Mechanical τ(ε) shear analysis and thermo-structural modifications of the nanostructured talc particulate were investigated after selected milling times (0, 1, 5 and 20 h). At the very early stages of milling (1 h) layer flattening, lamination and texturing of the talc particles occurred. For prolonged milling (up to 20 h), a progressive reduction of the TOT talc stacking layer coherence, from about 20–5 nm, and an increase of (001) microstrain from about 0.6–2.2 × 10−2 nm, as a non-linear function of the treatment time, were observed. A progressive increase of the specific surface area up to 28 m2/g as a consequence of the particle size reduction took place at intermediate milling times (5 h) and reduced to about 10 m2/g at prolonged milling (20 h). Even the thermo-structural behaviour of the particulate was significantly modified. For 20-h milled talc, a severe decrease of the dehydroxylation temperature from about 900–600 °C was observed with a concomitant anticipation of the recrystallisation of talc into MgSiO3 (enstatite). The τ(ε) behaviour of the compound was strongly affected by the milling treatment changing from a shear-softening regime (untreated and 1 h) to a shear-hardening one (20 h). The observed changes of talc are of great importance to understand the rheology and the thermal transformation kinetics of talc compounds and can be exploited in those industrial applications that required milling of talc, such as in the production of talc-polymers nanocomposites or in medium–high-temperature ceramic processes.  相似文献   

17.
The electrochemical behaviors of an emerging pollutant, benzotriazole (BTA), at multiwall carbon nanotubes and Nafion modified glassy carbon electrode (MWNTs-Nafion/GCE) were investigated systematically. The electrochemical reduction of BTA was significantly improved by MWNTs-Nafion compared to bare GCE, ascribed to the excellent adsorption capacity and electrocatalytic activity of MWNTs. BTA presented well-defined reduction peaks only at pH <3.0, suggesting the involvement of lots of protons in the reduction process. Peak potential shifted negatively and peak current decreased significantly with pH increase. BTA showed various UV–Vis absorption spectra in acidic and alkaline mediums. Cathodic peak current increased linearly with square root of sweep rate as well as with the concentration of BTA from 3.0?×?10?6 to 1.6?×?10?4 mol L?1. This suggests a diffusion-controlled and irreversible electrode process. Diffusion coefficient of BTA on MWNTs-Nafion/GCE was obtained as 2.67?×?10?2 cm2 s?1 with four orders of magnitude larger than that on GCE. MWNTs-Nafion/GCE showed a good selectivity between BTA and O2 but poor selectivity between BTA and tolyltriazole.  相似文献   

18.
The effect of plasticizer and TiO2 nanoparticles on the conductivity, chemical interaction and surface morphology of polymer electrolyte of MG49–EC–LiClO4–TiO2 has been investigated. The electrolyte films were successfully prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by sol-gel process and was added into the MG49–EC–LiClO4 electrolyte system. Alternating current electrochemical impedance spectroscopy was employed to investigate the ionic conductivity of the electrolyte films at 25 °C, and the analysis showed that the addition of TiO2 filler and ethylene carbonate (EC) plasticizer has increased the ionic conductivity of the electrolyte up to its optimum level. The highest conductivity of 1.1 × 10−3 Scm−1 was obtained at 30 wt.% of EC. Fourier transform infrared spectroscopy measurement was employed to study the interactions between lithium ions and oxygen atoms that occurred at carbonyl (C=O) and ether (C-O-C) groups. The scanning electron microscopy micrograph shows that the electrolyte with 30 wt.% EC posses the smoothest surface for which the highest conductivity was obtained.  相似文献   

19.
A novel sensitive electrochemical sensor has been developed by modification of glassy carbon electrode (GCE) with graphene (GRP), chitosan (CHIT), and bismuth oxide (Bi2O3) nanoparticles. The morphological characteristics of nanocomposite (GRP-CHIT-Bi2O3 or GCB) were studied by scanning electron microscope and atomic force microscopy. The electrochemical behavior of epinephrine at nanocomposite modified GCE (GCB/GCE) was investigated in pH 7.4 phosphate buffer solution using cyclic voltammetry and square wave voltammetry. GCB/GCE showed an enhancement in the current response as compared to bare GCE. Electrochemical impedance spectra showed a reduction of charge transfer resistance and higher electrocatalytic behavior of the sensor. The electrooxidation process of epinephrine at the modified sensor was found to be diffusion controlled. GCB/GCE showed a linear response to epinephrine in the range 100 to 500 nM. The limit of detection and limit of quantification were found to be 3.56 and 11.85 nM, respectively, which is lower than many other sensors reported for epinephrine in literature. The modified sensor showed high sensitivity (1.3 nA/nM) and selectivity for epinephrine. The method was employed for quantification of epinephrine in pharmaceutical formulation and human blood serum samples.  相似文献   

20.
The production of monodispersed magnetic nanoparticles with appropriate surface modification has attracted increasing attention in biomedical applications including drug delivery, separation, and purification of biomolecules from the matrices. In the present study, we report rapid and room temperature reaction synthesis of gold-coated iron nanoparticles in aqueous solution using the borohydride reduction of HAuCl4 under sonication for the first time. The resulting nanoparticles were characterized with transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), ultraviolet visible spectroscopy (UV–Vis), and X-ray diffraction (XRD). Surface charges and magnetic properties of the nanoparticles were also examined. The pattern of Fe3O4 nanoparticles is face centered cubic with an average diameter of 9.5 nm and the initial reduction of gold on the surface of Fe3O4 particles exhibits uniform Fe3O4–Au nanoparticles with an average diameter of 12.5 nm. The saturation magnetization values for the uncoated and gold-coated Fe3O4 nanoparticles were found to be 30 and 4.5 emu/g, respectively, at 300 K. The progression of binding events between boronic acid terminated ligand shell and fructose based on the covalent bonding interaction was measured by absorbance spectral changes. Immunomagnetic separation was also performed at different E. coli concentration to evaluate capturing efficiency of resulting nanoparticles. Immunomagnetic separation percentages were varied in a range of 52.1 and 21.9% depend on the initial bacteria counts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号