首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel electrochemical platform based on nickel oxide (NiO) nanoparticles and TiO2–graphene (TiO2–Gr) was developed for the direct electrochemistry of glucose oxidase (GOD). The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The experimental results demonstrated that the nanocomposite well retained the activity of GOD and the modified electrode GOD/NiO/TiO2–Gr/GCE exhibited excellent electrocatalytic activity toward the redox of GOD as evidenced by the significant enhancement of redox peak currents in comparison with bare GCE. The biosensor responded linearly to glucose in the range of 1.0–12.0?mM, with a sensitivity of 4.129?μA?mM?1 and a detection limit of 1.2?×?10?6?M under optimized conditions. The response time of the biosensor was 3?s. In addition, the developed biosensor possessed good reproducibility and stability, and there was negligible interference from other electroactive components.  相似文献   

2.
First principles calculations are used to anticipate the electrochemistry of polyoxoanionic materials consisting of XO4 − yAy (A = F, N) groups. As an illustrative case, this work focuses on the effect of either N or F for O substitution upon the electrochemical properties of Li2FeSiO4. Within the Pmn21–Li2FeSiO4 structure, virtual models of Li2Fe22.5+SiO3.5N0.5 and Li1.5Fe2+SiO3.5F0.5 have been analyzed. We predict that the lithium deinsertion voltage associated to the Fe3+/Fe4+ redox couple is decreased by both substituents. The high theoretical specific capacity of Li2FeSiO4 (330 mAh/g) could be retained in N-substituted silicates thanks to the oxidation of N3− anions, whilst Li1.5Fe2+SiO3.5F0.5 has a lower specific capacity inherent to the F substitution. Substitution of N/F for O will respectively improve/worsen the electrode characteristics of Li2FeSiO4.  相似文献   

3.
Graphene/Fe3O4 nanocomposite was prepared for the immobilization of hemoglobin (Hb) to improve the electron transfer between Hb and glass carbon electrode (GCE). The characterization of nanocomposites was described by transmission electron microscopy, Fourier transform infrared, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The electrochemistry of Hb on the graphene/Fe3O4-based GCE was investigated by cyclic voltammetry and amperometric measurement. The modified electrode showed a wide linear range from 0.25 μmol/L to 1.7 mmol/L with a correlation coefficient of 0.9967. The detection limit of the H2O2 biosensor was estimated at 6.0?×?10?6?mol/L at a signal-to-noise ratio of 3.  相似文献   

4.
Based on graphene (GR), TiO2 nanorods, and chitosan (CTS) nanocomposite modified carbon ionic liquid electrode (CILE) as substrate electrode, a new electrochemical DNA biosensor was effectively fabricated for the detection of the transgenic soybean sequence of MON89788. By using methylene blue (MB) as hybridization indicator for monitoring the hybridization with different ssDNA sequences, the differential pulse voltammetric response of MB on DNA modified electrodes were recorded and compared. Due to the synergistic effects of TiO2 nanorods and GR on the electrode surface, the electrochemical responses of MB were greatly increased. Under optimal conditions the differential pulse voltammetric response of the target ssDNA sequence could be detected in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 7.21×10?13 mol/L (3σ). This electrochemical DNA biosensor was further applied to the polymerase chain reaction (PCR) product of transgenic soybeans with satisfactory results.  相似文献   

5.
We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s?1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L?1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.
Figure
A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.  相似文献   

6.
Wu J  Zou Y  Gao N  Jiang J  Shen G  Yu R 《Talanta》2005,68(1):12-18
C/Fe nanocomposite (CFN) was synthesized by a procedure similar to an exfoliation/adsorption process to intercalate Fe3+ into graphite oxide (GO) layers and would be reduced in a H2 atmosphere. The results of X-ray diffractometry (XRD) and transimission electron microscopy (TEM) show that the form of CFN is carbon nanotube-Fe nanoparticle composite with α-Fe distributed on the nanotube wall. Paste electrode has been constructed using CFN mixed with paraffin. The electrochemical characteristics of such carbon-Fe nanocomposite paste electrode (CFNPE) has been compared with that of carbon paste electrode (CPE) and evaluated with respect to the electrochemistry of potassium ferricyanide, ascorbic acid and cysteine by cyclic voltammetry. CFNPE can accelerate the electron-transfer to improve the electrochemical reaction reversibility. To fabricate the third-generation glucose biosensor, glucose oxidase (GOD) was immobilized on CFNPE surface with Nafion covered after a pretreatment. Oxygen, ascorbic acid and uric acid have no interference with the glucose detection. The biosensor displays a remarkable sensitivity and stability and the results used in the determination of glucose in the human serum samples are satisfactory.  相似文献   

7.
In this paper, the mixture of Co3O4–graphene nanocomposite and horseradish peroxidase (HRP) was spread on the surface of carbon ionic liquid electrode (CILE). Then, Nafion film was used for the immobilization. The results of spectroscopy proved that HRP kept up its native structure in the complex material. Direct electrochemistry of HRP resulted in a couple of quasi-reversible redox waves on cyclic voltammograms, reflecting the realization of direct electron transfer of HRP with electrode. The improvement in electrochemical responses was due to the usage of highly conductive Co3O4–graphene nanocomposite with biocompatible interface. Electrochemical parameters such as the electron transfer coefficient (α) was estimated as 0.47, and the apparent heterogeneous electron transfer rate constant (k s) was calculated as 2.90 s?1. The HRP modified electrode exhibited good electrochemical catalytic ability toward the reduction of trichloroacetic acid and NaNO2. As a consequence, an updated third-generation electrochemical HRP biosensor with Co3O4–GR/CILE was constructed successfully.  相似文献   

8.
《Analytical letters》2012,45(15):2819-2831
Abstract

A new hemoglobin (Hb) modified carbon paste (CP) electrode was fabricated by simply mixing the hemoglobin with carbon powder and paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of Hb-carbon composite paste electrode. Direct electrochemistry of hemoglobin in the paste electrode was easily achieved, and a pair of well-defined quasi-reversible redox peak of heme Fe(III)/Fe(II) couple appeared with the formal potential (E0′) as ?0.335 V (vs. Saturated calomel electrode; CE) in pH 7.0 phosphate buffer solution (PBS). The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) and H2O2.  相似文献   

9.
Fluorine? tin oxide (FTO) nanostructure was developed on the surface of a glass plate using spray payroliziz method. A new electrochemical biosensor was fabricated based on a layer by layer process. In this process chitosan? Fe3O4 (CH? Fe3O4) nanocomposite film was prepared at the surface of FTO electrode by dip? coating method. In the next step, the glucose oxidase (GOx) was immobilized on the CH? Fe3O4/FTO nanocomposite electrode. The GOx/CH? Fe3O4/FTO bioelectrode has a linear range of 10–270 µM and a detection limit of 5 µM. The highest sensitivity was obtained at 1.2 µA mM?1 cm?2.  相似文献   

10.
A novel nanocomposite integrating the good biocompatibility of polyacrylic resin nanoparticles (PAR) and the good conductivity of colloidal gold nanoparticles was proposed to construct the matrix for the immobilization of hemoglobin (Hb) on the surface of a glassy carbon electrode (GCE). UV‐vis spectra demonstrated that Hb preserved its native structure after being entrapped into the composite film. The direct electrochemistry of hemoglobin (Hb) in this nanocomposite films showed a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks with a formal potential of ?0.307 mV and a constant electron transfer rate of 2.51±0.2 s?1. The resultant amperometric biosensor showed fast responses to the analytes with excellent detection limits of 0.2 µM for H2O2 and 0.89 µM for TCA (S/N=3), and high sensitivity of 1108.6 for H2O2 and 77.14 mA cm?2 M?1 for TCA, respectively. The linear current response was found in the range from 0.59 to 7.3 µM (R2=0.9996) for H2O2 and from 5 to 85 µM (R2=0.9996) for TCA, while the superior apparent Michaelis–Menten constant was 0.012 mM for H2O2 and 0.536 mM for TCA, respectively. Therefore, the PAR‐Au‐Hb nanocomposite as a novel matrix opens up a possibility for further study on the direct electrochemistry of other proteins.  相似文献   

11.
《Analytical letters》2012,45(14):2664-2672
Abstract

Direct electrochemistry of the myoglobin‐triacetone triperoxide (Mb‐TATP) composite on carbon paste (CP) electrode is reported. This electrode gives a well‐defined and quasi‐reversible cyclic voltammogram for the Mb FeIII/FeII redox coupled with the formal potential (E?′) of ?0.302 V (vs. Ag/AgCl) in pH 6.92 phosphate buffer. Electronic and vibrational spectroscopies show that the Mb in the composite retains a structure similar to its native form. The enzymatic reactivity to the reduction of H2O2 has been studied for the Mb‐TATP film. The analytical performances have been obtained with the linear range of 78.32–1135.64 µM, the detection limit of 55 µM (S/N=3), and the apparent Michaelis‐Menten constant (K m) of 662.8 µM. This H2O2 biosensor based on the electrocatalysis of the immobilized Mb presents a higher stability within two weeks.  相似文献   

12.
Herein, we reported a titanium oxide (TiO2) modified activated carbon nanocomposite that showed advantageous characteristics in terms of electro-conductivity, catalytic activity and surface area. The designed nanocomposite was employed to modify the screen printed carbon electrode transducer surface in the construction of an electrochemical sensor. The electrode surface modification was characterised by cyclic voltammetry and impedimetric studies. The modified transducer surface was subsequently used for the detection of four phenolic endocrine disruptors, p-nitrophenol, hydroquinone, catechol and 1-naphtol. Under optimal conditions, TiO2 modified activated carbon sensor was evaluated by differential pulse voltammetry showing a good linearity with correlation coefficients higher than 0.99. It showed, in parallel, a high sensitivity where the detection limits were 348 ng/L, 110.1 ng/L, 3.3 ng/L and 7.2 µg/L for the respective studied compounds (S/N = 3). Finally, we validated the method with river water samples, and good recovery values were obtained showing the potential application of the reported biosensor.  相似文献   

13.
An amperometric tyramine biosensor based on poly‐L‐lysine (PLL) and Fe3O4 nanoparticles (Fe3O4NP) modified screen printed carbon electrode (SPCE) was developed. PLL was formed on the SPCE by the electropolymerization of L‐lysine. Subsequently, Fe3O4NP suspension prepared in chitosan (CH) solution was casted onto the PLL/SPCE. Tyrosinase (Ty) enzyme was immobilized onto the modified Fe3O4?CH/PLL/SPCE and the electrode was coated with Nafion to fabricate the Ty/Fe3O4?CH/PLL/SPCE. Different techniques including scanning electron microscopy, chronoamperometry (i–t curve), cyclic voltammetry and electrochemical impedance spectroscopy were utilized to study the fabrication processes, electrochemical characteristics and performance parameters of the biosensor. The analytical performance of the tyramine biosensor was evaluated with respect to linear range, sensitivity, limit of detection, repeatability and reproducibility. The response of the biosensor to tyramine was linear between 4.9×10?7–6.3×10?5 M with a detection limit of 7.5×10?8 M and sensitivity of 71.36 μA mM?1 (595 μA mM?1 cm?2). The application of the developed biosensor for the determination of tyramine was successfully tested in cheese sample and mean analytical recovery of added tyramine in cheese extract was calculated as 101.2±2.1 %. The presented tyramine biosensor is a promising approach for tyramine analysis in real samples due to its high sensitivity, rapid response and easy fabrication.  相似文献   

14.
Titanium dioxide (TiO2) nanowires were synthesized and used for the realization of direct electrochemistry of hemoglobin (Hb) with carbon ionic liquid electrode (CILE) as the substrate electrode. TiO2‐Hb composite was casted on the surface of CILE with a chitosan film and spectroscopic results confirmed that Hb retained its native structure in the composite. Direct electron transfer of Hb on the modified electrode was realized with a pair of quasi‐reversible redox waves appeared, indicating that the presence of TiO2 nanowires could accelerate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Electrochemical behaviors of Hb on the modified electrode were carefully investigated with the values of the electron transfer coefficient (α), the electron transfer number and the heterogeneous electron transfer rate constant (ks) as 0.58, 0.98 and 1.62 s‐1. The Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid and NaNO2 with wider linear range and lower detection limit, indicating the successful fabrication of a new third‐generation biosensor.  相似文献   

15.
In this paper two kinds of ionic liquids (ILs) were used for the construction of a myoglobin (Mb) electrochemical biosensor. Firstly a hydrophilic ionic liquid of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) was used as binder to prepare a carbon ionic liquid electrode (CILE), then a Nafion and hydrophobic ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) composite film was applied on the surface of the CILE. The direct electrochemistry of Mb in the Nafion‐BMIMPF6/CILE was achieved with the cathodic and anodic peak potentials located at ?0.345 V and ?0.213 V (vs. SCE). The formal potential (E°′) was located at ?0.279 V, which was the characteristic of Mb FeIII/FeII redox couples. The electrochemical behaviors of Mb in the Nafion‐ionic liquid composite film modified CILE were carefully investigated. The Mb modified electrode showed good electrocatalytic behaviors to the reduction of trichloroacetic acid (TCA) and NaNO2. Based on the Nafion‐BMIMPF6/Mb/CILE, a new third generation reagentless biosensor was constructed.  相似文献   

16.
We describe a glassy carbon electrode (GCE) modified with a film composed of Nafion and TiO2-graphene (TiO2-GR) nanocomposite, and its voltammetric response to the amino acids L-tryptophane (Trp) and L-tyrosine (Tyr). The incorporation of TiO2 nanoparticles with graphene significantly improves the electrocatalytic activity and voltammetric response compared to electrodes modified with Nafion/graphene only. The Nafion/TiO2-GR modified electrode was used to determine Trp and Tyr with detection limits of 0.7 and 2.3 μM, and a sensitivity of 75.9 and 22.8 μA mM?1 for Trp and Tyr, respectively.
Figure
The electrochemical sensor based on Nafion/TiO2-GR composite film modified GCE was presented. The integration of TiO2 nanoparticles with graphene provides an efficient microenvironment to promote the electrochemical reaction of amino acids Trp and Tyr. The fabricated electrochemical sensor exhibits favorable analytical performance for Trp and Tyr, with high sensitivity, low detection limit and good reproducibility.  相似文献   

17.
Qu Y  Min H  Wei Y  Xiao F  Shi G  Li X  Jin L 《Talanta》2008,76(4):758-762
In this paper, Au–TiO2/Chit modified electrode was prepared with Au–TiO2 nanocomposite (Au–TiO2) and Chitosan (Chit) as a conjunct. The Au–TiO2 nanocomposite and the films were characterized by electrochemical and spectroscopy methods. A set of experimental conditions was also optimized for the film's fabrication. The electrochemical and electrocatalytic behaviors of Au–TiO2/Chit modified electrode to trace organophosphates (OPs) insecticides such as parathion were discussed in this work. By differential pulse voltammetry (DPV) measurement, the current responses of Au–TiO2/Chit modified electrode were linear with parathion concentration ranging from 1.0 ng/ml to 7.0 × 103 ng/ml with the detection limit of 0.5 ng/ml. In order to evaluate the performance of the detection system, we also examined the real samples successfully in this work. It exhibited a sensitive, rapid and easy-to-use method for the fast determination of trace OPs insecticides.  相似文献   

18.
Excessive glucose present in the blood of diabetic patients binds with the hemoglobin of red blood cells resulting in the formation of glycated hemoglobin (HbA1c). Measurement of HbA1c levels may help in identifying the efficacy of the ongoing treatment and hence provide a better control over the disease. In the present study, we have synthesized a sensitive and stable scaffold, which consists of Au nanoparticles (GNPs)-dotted tubular TiO2, for the construction of an electrochemical HbA1c biosensor. 12-phosphotungstic acid has been used as a reducer after depositing well-dispersed GNPs on TiO2 nanotubes (TiO2 NTs) and an electron mediator by accelerating the electron transfer between the conductor and protein. The fabricated electrode was characterized using scanning electron microscopy (SEM), cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopic analysis (EIS). Biosensor exhibited low detection limit (0.5 μM), fast response time (3 s) and wide linearity (from 0.5 to 2000 μM). The working electrode was used 100 times over 4 months, when stored at 4 °C. The HbA1c biosensor was then effectively used to measure the % of HbA1c in the blood of apparently healthy persons and diabetic patients.  相似文献   

19.
Nanostructured Fe2O3–graphene composite was successfully fabricated through a facile solution-based route under mild hydrothermal conditions. Well-crystalline Fe2O3 nanoparticles with 30–60?nm in size are highly encapsulated in graphene nanosheet matrix, as demonstrated by various characterization techniques. As electrode materials for supercapacitors, the as-obtained Fe2O3–graphene nanocomposite exhibits large specific capacitance (151.8?F?g?1 at 1?A?g?1), good rate capability (120?F?g?1 at 6?A?g?1), and excellent cyclability. The significantly enhanced electrochemical performance compared with pure graphene and Fe2O3 nanoparticles may be attributed to the positive synergetic effect between Fe2O3 and graphene. In virtue of their superior electrochemical performance, they will be promising electrode materials for high-performance supercapacitors applications.  相似文献   

20.
In this work, a novel sensor for detecting hydrogen peroxide was constructed on the base of nanotubular TiO2 and platinum nanoparticles. The morphology, structural, and electrochemical properties of the Pt/TiO2 nanocomposite electrodes were characterized by SEM, XRD and electrochemical methods. With an operating potential of +0.3 V versus Ag/AgCl, the sensor produces catalytic oxidation currents at the nanocomposite electrode, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to hydrogen peroxide concentration in the range 4×10?6 to 1.25×10?3 M. The regression equation is I (μA)=0.85 c (mM)+0.16 with a correction coefficient of 0.997. At a signal‐to‐noise ratio of 3, a detection limit of 4.0 μM H2O2 can be observed for the nanocomposite electrode. In addition, the sensor has a good stability and reproducibility. The construction process is simple and inexpensive. The results demonstrated that nanotubular TiO2 exhibits great prospect for developing a class of ideal and novel bioreactors and biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号