首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in NMR techniques to measure anisotropic spin interactions such as residual dipolar coupling (RDC) have provided better insights into protein structure as well as dynamics. Exploitation of RDC, however, still remains challenging because its successful application requires a reasonable starting model. Using the singular value decomposition method, we have recently developed an RDC restraint potential to optimally extract orientational information from RDC without the prerequisite of any structural information. In the present study, its efficacy is further illustrated by folding a beta-hairpin and alpha-helix of protein G from extended conformations with RDC restraints alone by employing the replica exchange torsion angle molecular dynamics (REX-TAMD) technique. Subsequently, the entire structure of protein G has been determined accurately using the developed fragment superposition method (FRAGSUM). In FRAGSUM, each overlapping fragments (10 amino acids long) is first folded individually by REX-TAMD, and then the common amino acids are superimposed to determine the entire structure. Because FRAGSUM does not require any additional information besides RDC, it offers a new strategy for de novo structure determination using exclusively RDC.  相似文献   

2.
NMR structure determination of large RNAs is often restricted by limited RDC information caused by chemical shift degeneracy. We established a general, time- and cost-effective methodology for the preparation of 13C/15N complementary labeled RNAs from a single plasmid. Applying this method to the 25 kDa BC1-DTE RNA, we were able to resolve severe chemical shift degeneracy, thereby almost doubling the number of RDC restraints in comparison to the conventional 13C,15N uniform-labeled RNA.  相似文献   

3.
As genome-sequencing projects rapidly increase the database of protein sequences, the gap between known sequences and known structures continues to grow exponentially, increasing the demand to accelerate structure determination methods. Residual dipolar couplings (RDCs) are an attractive source of experimental restraints for NMR structure determination, particularly rapid, high-throughput methods, because they yield both local and long-range orientational information and can be easily measured and assigned once the backbone resonances of a protein have been assigned. While very extensive RDC data sets have been used to determine the structure of ubiquitin, it is unclear to what extent such methods will generalize to larger proteins with less complete data sets. Here we incorporate experimental RDC restraints into Rosetta, an ab initio structure prediction method, and demonstrate that the combined algorithm provides a general method for de novo determination of a variety of protein folds from RDC data. Backbone structures for multiple proteins up to approximately 125 residues in length and spanning a range of topological complexities are rapidly and reproducibly generated using data sets that are insufficient in isolation to uniquely determine the protein fold de novo, although ambiguities and errors are observed for proteins with symmetry about an axis of the alignment tensor. The models generated are not high-resolution structures completely defined by experimental data but are sufficiently accurate to accelerate traditional high-resolution NMR structure determination and provide structure-based functional insights.  相似文献   

4.
13C-(1)H residual dipolar couplings (RDC) have been measured for the bases and sugars in the theophylline-binding RNA aptamer, dissolved in filamentous phage medium, and used to investigate the long-range structural and dynamic behavior of the molecule in the solution state. The orientation dependent RDC provide additional restraints to further refine the overall structure of the RNA-theophylline complex, whose long-range order was poorly defined in the NOE-based structural ensemble. Structure refinement using RDC normally assumes that molecular alignment can be characterized by a single tensor and that the molecule is essentially rigid. To address the validity of this assumption for the complex of interest, we have analyzed distinct domains of the RNA molecule separately, so that local structure and alignment tensors experienced by each region are independently determined. Alignment tensors for the stem regions of the molecule were allowed to float freely during a restrained molecular dynamics structure refinement protocol and found to converge to similar magnitudes. During the second stage of the calculation, a single alignment tensor was thus applied for the whole molecule and an average molecular conformation satisfying all experimental data was determined. Semirigid-body molecular dynamics calculations were used to reorient the refined helical regions to a relative orientation consistent with this alignment tensor, allowing determination of the global conformation of the molecule. Simultaneously, the local structure of the theophylline-binding core of the molecule was refined under the influence of this common tensor. The final ensemble has an average pairwise root mean square deviation of 1.50 +/- 0.19 A taken over all heavy atoms, compared to 3.5 +/- 1.1 A for the ensemble determined without residual dipolar coupling. This study illustrates the importance of considering both the local and long-range nature of RDC when applying these restraints to structure refinements of nucleic acids.  相似文献   

5.
The structural content of the denatured state has yet to be fully characterized. In recent years, large residual dipolar couplings (RDCs) from denatured proteins have been observed under alignment conditions produced by bicelles and strained polyacrylamide gels. In this report, we describe efforts to extend our picture of the residual structure in denatured nuclease by measuring RDCs with multiple alignment tensors. Backbone amide 15N-1H RDCs were collected from 4 M urea for a total of eight RDC data sets. The RDCs were analyzed by singular value decomposition (SVD) to determine the number of independent alignment tensors present in the data. On the basis of the resultant singular values and propagated error estimates, it is clear that there are at least three independent alignment tensors. These three independent RDC datasets can be reconstituted as orthogonal linear combinations, (OLC)-RDC datasets, of the eight actually recorded. The first, second, and third OLC-RDC datasets are highly robust to the removal of any single experimental RDC dataset, establishing the presence of three independent alignment tensors, sampled well above the level of experimental uncertainty. The observation that the RDC data span three or more dimensions of the five-dimensional parameter space demonstrates that the ensemble average structure of denatured nuclease must be asymmetric with respect to these three orthogonal principal axes, which is not inconsistent with earlier work demonstrating that it has a nativelike topology.  相似文献   

6.
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.  相似文献   

7.
Residual dipolar couplings (RDC) of proteins dissolved in anisotropic media promise to speed up the determination of protein structures. We consider the backbone as a robotic mechanism and formulate inverse kinematics problems using RDC restraints from two media. The φ, ψ of each secondary structure element (SSE) are computed from oriented vectors in consecutive peptide planes. We search for the optimum conformation joining the solutions of two independent backbone halves. The matrix transforming the vector Z of a global frame from one SSE into the other determines their orientation. Three distance constraints between two oriented SSE determine their relative position by solving nine polynomial equations. The benefit of this method is that complete and accurate solutions are obtained overcoming the local minima problems of heuristic procedures. The algorithm is implemented on MAPLE using the least number of experimental data; the runtimes take an order of seconds on a common PC. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Residual dipolar couplings (RDCs) are a rich source of structural information that goes beyond the range covered by the nuclear Overhauser effect or scalar coupling constants. They can only be measured in partially oriented samples. RDC studies of peptides in organic solvents have so far been focused on samples in chloroform or DMSO. Here, we show that stretched poly(vinyl acetate) can be used for the partial alignment of a linear β‐peptide with proteinogenic side chains in methanol. 1DCH, 1DNH, and 2DHH RDCs were collected with this sample and included as restraints in a simulated annealing calculation. Incorporation of RDCs in the structure calculation process improves the long‐range definition in the backbone of the resulting 314‐helix and uncovers side‐chain mobility. Experimental side‐chain RDCs of the central leucine and valine residues are in good agreement with predicted values from a local three‐state model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Residual dipolar couplings (RDC) from partially aligned molecules provide long-range structural data and are thus particularly well adapted to rapid structure validation or protein fold recognition. Extensive measurements in two alignment media can also provide precise de novo structure from RDC alone. We have applied a novel combination of these approaches to the study of methionine sulfoxide reductase (MsrA) from Erwinia chrysanthemi, a 27 kDa enzyme essential for repairing oxidative stress damage. The tertiary fold was initially validated by comparing backbone RDC to expected values from the crystal structure of the homologous MsrA from Escherichia coli. Good agreement was found throughout the chain, verifying the overall topology of the molecule, with the exception of the catalytically important peptide P196-L202, where strong and systematic RDC violation was observed. No evidence for local differential mobility in this region was detected, implying that the structure of the strand differs in the two molecules. We have therefore applied the de novo approach meccano to determine the conformation of this peptide using only RDC. A single conformation is found that is in agreement with all measured data. The aligned peptide can be docked onto the expected covalence of the rest of the template molecule while respecting its strictly defined relative orientation. In contrast to the structure of MsrA from E. coli, the reactive side chain of Cys200 is oriented toward the interior of the molecule and therefore closer to the catalytic Cys53, obviating the need for previously proposed conformational reorganization prior to formation of this disulfide intermediate. This analysis requires only backbone assignment and uses unambiguously assigned and readily measurable structural data, thereby greatly economizing investigation time compared to established nuclear Overhauser effect- (nOe-) based structure calculation methods.  相似文献   

11.
We present a method that significantly enhances the robustness of (automated) NMR structure determination by allowing the NOE data corresponding to unassigned NMR resonances to be used directly in the calculations. The unassigned resonances are represented by additional atoms or groups of atoms that have no interaction with the regular protein atoms except through distance restraints. These so-called "proxy" residues can be used to generate NOE-based distance restraints in a similar fashion as for the assigned part of the protein. If sufficient NOE information is available, the restraints are expected to place the proxies at positions close to the correct atoms for the unassigned resonance, which can facilitate subsequent assignment. Convergence can be further improved by supplying additional information about the possible identities of the unassigned resonances. We have implemented this approach in the widely used automated assignment and structure calculation protocols ARIA and CANDID. We find that it significantly increases the robustness of structure calculations with regard to missing assignments and yields structures of higher quality. Our approach is still able to find correctly folded structures with up to 30% randomly missing resonance assignments, and even when only backbone and beta resonances are present! This should be of significant value to NMR-based structural proteomics initiatives.  相似文献   

12.
Upon alignment of oligonucleotides in a magnetic field, the downfield TROSY component of the 13C-{1H} doublet changes its resonance frequency as a result of residual 13C-1H dipolar coupling (RDC) and residual 13C chemical shift anisotropy (RCSA), and the sum of these two second rank tensors is referred to as the pseudo-CSA. The experimentally measured difference in the resonance frequency of the 13C TROSY component in the aligned and isotropic samples is referred to as residual pseudo-CSA (RPCSA), and it can be used directly as a restraint during structure calculation. Because measurement of the RPCSA involves detection of the narrow TROSY 13C doublet component, it is applicable to systems with larger rotational correlation times than RDC measurement. The method is demonstrated for structure refinement of the helical region of a 24-nt stem-loop segment or ribosomal helix-35, uniformly enriched in 13C and 15N, with RPCSA values measured at 5 and 25 degrees C. Substantial cross-validated improvements in structural accuracy are obtained upon incorporation of RPCSA restraints.  相似文献   

13.
The major rate-limiting step in high-throughput NMR protein structure determination involves the calculation of a reliable initial fold, the elimination of incorrect nuclear Overhauser enhancement (NOE) assignments, and the resolution of NOE assignment ambiguities. We present a robust approach to automatically calculate structures with a backbone coordinate accuracy of 1.0-1.5 A from datasets in which as much as 80% of the long-range NOE information (i.e., between residues separated by more than five positions in the sequence) is incorrect. The current algorithm differs from previously published methods in that it has been expressly designed to ensure that the results from successive cycles are not biased by the global fold of structures generated in preceding cycles. Consequently, the method is highly error tolerant and is not easily funnelled down an incorrect path in either three-dimensional structure or NOE assignment space. The algorithm incorporates three main features: a linear energy function representation of the NOE restraints to allow maximization of the number of simultaneously satisfied restraints during the course of simulated annealing; a method for handling the presence of multiple possible assignments for each NOE cross-peak which avoids local minima by treating each possible assignment as if it were an independent restraint; and a probabilistic method to permit both inactivation and reactivation of all NOE restraints on the fly during the course of simulated annealing. NOE restraints are never removed permanently, thereby significantly reducing the likelihood of becoming trapped in a false minimum of NOE assignment space. The effectiveness of the algorithm is demonstrated using completely automatically peak-picked experimental NOE data from two proteins: interleukin-4 (136 residues) and cyanovirin-N (101 residues). The limits of the method are explored using simulated data on the 56-residue B1 domain of Streptococcal protein G.  相似文献   

14.
The use of a short, three-residue Cu(2+)-binding sequence, the ATCUN motif, is presented as an approach for extracting long-range distance restraints from relaxation enhancement NMR spectroscopy. The ATCUN motif is prepended to the N-termini of proteins and binds Cu(2+) with a very high affinity. Relaxation rates of amide protons in ATCUN-tagged protein in the presence and absence of Cu(2+) can be converted into distance restraints and used for structure refinement by using a new routine, PMAG, that has been written for the structure calculation program CNS. The utility of the approach is demonstrated with an application to ATCUN-tagged ubiquitin. Excellent agreement between measured relaxation rates and those calculated on the basis of the X-ray structure of the protein have been obtained.  相似文献   

15.
16.
Cross-validation of a solid-state NMR-derived membrane polypeptide structure is demonstrated. An initial structure has been achieved directly from solid-state NMR derived orientational restraints based on a variety of anisotropic nuclear spin interactions. Refining the molecular structure involves setting up a penalty function that incorporates all available solid-state NMR experimental data and an energy function. A validation method is required to choose the optimal weighting factor for the total penalty function to balance the contribution from the experimental restraints and the energy function. Complete cross-validation has been used to avoid over-fitting the orientational restraints. Such cross-validation involves partitioning of the experimental data into a test set and a working set followed by checking the free R-value during the refinement process. This approach is similar to the method used in crystallography and solution NMR. Optimizing the weighting factor on the penalty function by cross-validation will increase the quality of the refined structure from solid-state NMR data. The complete cross-validation and R-factor calculation is demonstrated using experimental solid-state NMR data from gramicidin A, a monovalent cation channel in lipid bilayers.  相似文献   

17.
Bicelles are a major medium form to produce weak alignment of soluble proteins for residual dipolar coupling (RDC) measurements. The obstacle to using the same type of bicelles for transmembrane proteins with solution-state NMR spectroscopy is the loss of signals due to the adhesion or penetration of the proteins into large bicelles, resulting in slow protein tumbling. In this study, weak alignment of the second and third transmembrane domains (TM23) of the human glycine receptor (GlyR) was achieved in low-q bicelles (q = DMPC/DHPC). Although protein-free bicelles with such low q would likely show isotropic properties, the insertion of TM23 induced weakly preferred orientations so that the RDC of the embedded protein can be measured. The extent of the alignment increased but the TM23 signal intensity decreased when q was varied from 0.19 to 0.60. A q of 0.50 was found to be an optimal compromise between alignment and the signal-to-noise ratio. In each pair of NMR experiments for RDC measurements, the same sample and pulse sequence were used, with one being performed at high-resolution magic-angle spinning to obtain pure J-couplings without RDC. A meaningful structure refinement in bicelles was possible by iteratively fitting the experimental RDCs to the back-calculated RDCs using the high-resolution NMR structure of GlyR TM23 in trifluoroethanol as the starting template. Combination of this method with the conventional high-resolution NMR in membrane mimicking mixtures of water and organic solvents offers an attractive way to derive structural information for membrane proteins in their native environment.  相似文献   

18.
Recent development of nuclear magnetic resonance (NMR) techniques provided new types of structural restraints that can be successfully used in fast and low‐cost global protein fold determination. Here, we present CABS‐NMR, an efficient protein modeling tool, which takes advantage of such structural restraints. The restraints are converted from original NMR data to fit the coarse grained protein representation of the C‐Alpha‐Beta‐Side‐group (CABS) algorithm. CABS is a Monte Carlo search algorithm that uses a knowledge‐based force field. Its versatile structure enables a variety of protein‐modeling protocols, including purely de novo folding, folding guided by restraints derived from template structures or, structure assembly based on experimental data. In particular, CABS‐NMR uses the distance and angular restraints set derived from various NMR experiments. This new modeling technique was successfully tested in structure determination of 10 globular proteins of size up to 216 residues, for which sparse NMR data were available. Additional detailed analysis was performed for a S100A1 protein. Namely, we successfully predicted Nuclear Overhauser Effect signals on the basis of low‐energy structures obtained from chemical shifts by CABS‐NMR. It has been observed that utility of chemical shifts and other types of experimental data (i.e. residual dipolar couplings and methyl‐methyl Nuclear Overhauser Effect signals) in the presented modeling pipeline depends mainly on size of a protein and complexity of its topology. In this work, we have provided tools for either post‐experiment processing of various kinds of NMR data or fast and low‐cost structural analysis in the still challenging field of new fold predictions. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

19.
Routine structure prediction of new folds is still a challenging task for computational biology. The challenge is not only in the proper determination of overall fold but also in building models of acceptable resolution, useful for modeling the drug interactions and protein-protein complexes. In this work we propose and test a comprehensive approach to protein structure modeling supported by sparse, and relatively easy to obtain, experimental data. We focus on chemical shift-based restraints from NMR, although other sparse restraints could be easily included. In particular, we demonstrate that combining the typical NMR software with artificial intelligence-based prediction of secondary structure enhances significantly the accuracy of the restraints for molecular modeling. The computational procedure is based on the reduced representation approach implemented in the CABS modeling software, which proved to be a versatile tool for protein structure prediction during the CASP (CASP stands for critical assessment of techniques for protein structure prediction) experiments (see http://predictioncenter/CASP6/org). The method is successfully tested on a small set of representative globular proteins of different size and topology, including the two CASP6 targets, for which the required NMR data already exist. The method is implemented in a semi-automated pipeline applicable to a large scale structural annotation of genomic data. Here, we limit the computations to relatively small set. This enabled, without a loss of generality, a detailed discussion of various factors determining accuracy of the proposed approach to the protein structure prediction.  相似文献   

20.
Molecular simulations restrained to single or multiple templates are commonly used in protein‐structure modeling. However, the restraints introduce additional barriers, thus impairing the ergodicity of simulations, which can affect the quality of the resulting models. In this work, the effect of restraint types and simulation schemes on ergodicity and model quality was investigated by performing template‐restrained canonical molecular dynamics (MD), multiplexed replica‐exchange molecular dynamics, and Hamiltonian replica exchange molecular dynamics (HREMD) simulations with the coarse‐grained UNRES force field on nine selected proteins, with pseudo‐harmonic log‐Gaussian (unbounded) or Lorentzian (bounded) restraint functions. The best ergodicity was exhibited by HREMD. It has been found that non‐ergodicity does not affect model quality if good templates are used to generate restraints. However, when poor‐quality restraints not covering the entire protein are used, the improved ergodicity of HREMD can lead to significantly improved protein models. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号