首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A star-shaped hexameric quaternary ammonium surfactant (PAHB), bearing six hydrophobic chains and six charged hydrophilic headgroups connected by an amide-type spacer group, was synthesized. The self-assembly behavior of the surfactant in aqueous solution was studied by surface tension, electrical conductivity, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, and NMR techniques. The results reveal that there are two critical aggregate concentrations during the process of aggregation, namely C(1) and C(2). The aggregate transitions are proved to be caused by the changes of the surfactant configuration through hydrophobic interaction among the hydrocarbon chains. Below C(1), PAHB may present a star-shaped molecular configuration due to intramolecular electrostatic repulsion among the charged headgroups, and large aggregates with network-like structure are observed. Between C(1) and C(2), the hydrophobic interaction among the hydrophobic chains may become stronger to make the hydrophobic chains of the PAHB molecules curve back and pack more closely, and then the network-like aggregates transfer to large spherical aggregates of ~100 nm. Beyond C(2), the hydrophobic interaction may become strong enough to cause the PAHB molecular configuration to turn into a pyramid-like shape, resulting in the transition of the spherical large aggregates to spherical micelles of ~10 nm. Interestingly, the PAHB displays high emulsification ability to linear fatty alkyls even at very low concentration.  相似文献   

2.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

3.
All-atom molecular dynamics simulation results regarding aqueous sodium dodecyl sulfate (SDS) solutions have been presented. Both salt-free solutions with different SDS concentrations and those containing calcium chloride additives have been studied. The simulation has shown that surface-active SDS ions form stable premicellar aggregates. The obtained molecular dynamics trajectories have been used to describe both the kinetic and structural properties of solutions containing SDS molecular aggregates and the properties of individual aggregates. Aggregation kinetics has been investigated, and the characteristic sizes of the aggregates have been calculated by different methods. It has been found that the size of a premicellar aggregate with aggregation number n = 16 in a salt-free solution virtually does not depend on surfactant concentration. Radial distribution functions (RDFs) of hydrogen and oxygen atoms of water molecules relative to the center of mass of an aggregate have no local maxima near the aggregate surface; i.e., the surface is incompletely wetted with water. Corresponding RDFs of carbon atoms have one, two or three maxima depending on the surfactant concentration and the serial number of a carbon atom in the hydrocarbon radical of the surface- active ion. The study of the potentials of mean force for the interaction of sodium and calcium ions with an aggregate having aggregation number n = 32 shows that only calcium ions can be strongly bound to such an aggregate.  相似文献   

4.
Reverse micelles are spheroidal aggregates formed by certain surfactants in apolar media. In contrast to normal micelles in water, the polar head groups of the surfactant molecules are directed towards the interior of the aggregate and form a polar core which can solubilize water (the “water pool”); the lipophilic chains are exposed to the solvent. The water of the water pool exhibits properties that (depending on the mole ratio of water to surfactant) differ from those of bulk water. Surprisingly, these reverse micelles are able to solubilize in hydrocarbon solvents hydrophilic molecules, e.g., enzymes and even plasmids, that are much larger than the original water-pool diameter. These biopolymer-containing reverse micelles can be viewed as novel microreactors, whose physical properties can be controlled through the water content. Remarkable is the ability of enzyme-containing micelles to react with water-insoluble, hydrocarbon-soluble substrates, as in the example of lipoxygenase with linoleic acid.  相似文献   

5.
The model of spherical molecular aggregate of nonionic surfactant is proposed. This model allows for the maximal (in accordance with packing rules) penetration of water molecules into an aggregate and is an alternative to the droplet model of molecular aggregate. Necessary conditions for the applicability of a model named quasi-droplet model are formulated. Based on this model, the dependence of the work of molecular aggregate formation on the aggregation number and surfactant monomer concentration in solution that plays the key role for the theory of micellization is studied. The equation is derived for the coordinates of maximum and minimum of aggregate formation work on the aggregation number axis arising with an increase in the concentration of micellar solution. Model calculations of the thermodynamic characteristics of the kinetics of micellization are performed. The approximation of the work of molecular aggregate formation allowing for the analytical study is constructed.  相似文献   

6.
Molecular dynamics simulations to study the behavior of an anionic surfactant close to TiO(2) surfaces were carried out where each surface was modeled using three different crystallographic orientations of TiO(2) (rutile), (001), (100) and (110). Even though all three surfaces were made with the same atoms the orientation was a key to determine adsorption since surfactant molecules aggregated in different ways. For instance, simulations on the surface (100) showed that the surfactant molecules formed a hemicylinder structure whereas the molecules on the surface (110) were attached to the solid by forming a hemisphere-like structure. Structure of the aggregated molecules and surfactant adsorption on the surfaces were studied in terms of tails and headgroups density profiles as well as surface coverage. From density profiles and angular distributions of the hydrocarbon chains it was possible to determine the influence of the solid surface. For instance, on surfaces (100) and (001) the surfactant molecules formed molecular layers parallel to the surface. Finally, it was found that in the solids (100) and (110) where there are oxygen atoms exposed on the surface the surfactant molecules were attached to the surfaces along the sites between the lines of these oxygen atoms.  相似文献   

7.
The dependence of the work of the molecular aggregate formation on the aggregation number and surfactant monomer concentration in solution that has the key role for the theory of micellization was studied on the basis of a simple realistic droplet model of spherical aggregate composed of surfactant molecules (the o/w micelle type). Analytical formulas were derived for the coordinates of maximum and minimum of aggregate formation work on the aggregation number axis arising with an increase in the concentration of micellar solution. Model calculations of the thermodynamic characteristics of the kinetics of micellization were performed for premicellar and micellar regions of aggregate sizes within a wide range of solution concentration including the critical micellization concentration.  相似文献   

8.
Fully polarised positive muons substituted for protons in organic free radicals can be used as spin labels which reveal information about the structure, dynamics and environment of these radicals. In applications via the technique of avoided-level-crossing muon spin resonance (ALC-microSR), the positive muon has been used to study the partitioning of phenyl alcohols in lamellar phase colloidal dispersions of a cationic dichain surfactant. Here we describe the experimental technique which permits highly sensitive spectroscopy as previously demonstrated for surfactant mixtures. We also demonstrate its capability in the study of partitioning of cosurfactant molecules in surfactant bilayers in order to elucidate the main factors which contribute to cosurfactant ordering at interfaces. The technique takes advantage of the positive muon combining with an electron to a hydrogen-like atom that is called muonium. This atom attaches to a phenyl group, forming a cyclohexadienyl-type radical that contains the muon as a polarised spin label, providing an excellent probe even for very low phenyl alcohol concentrations. The position of one type of resonance, which on the basis of spectroscopic selection rules is denoted as Delta(0), is related to the solvent polarity of the radicals' environment. The results derived from Delta(0) measurements reveal a systematic trend where the increasing chain length of the phenyl alcohol results in a deeper immersion of the phenyl ring of the alcohol into the surfactant bilayer with the OH group anchored at the interface. In addition, the data suggest partial penetration of water molecules into the bilayer. Furthermore, data ensuing from a second resonance (called Delta(1), which is dependent upon the degree of confinement of the radical within the surfactant aggregate structure) indicates not only that the phenyl alcohol resides in an anisotropic environment, (i.e. that the host molecule is unable to undergo full 3-D reorientation on a timescale of 50 ns), but the resonance line widths indicate that the radicals are undergoing fast rotation about a particular axis, in this instance about the first C-C substituent bond at the phenyl ring. Detailed analysis of these Delta(1) line shapes suggests that other types of motion involving reorientation of the above rotation axis are also present. At room temperature, the hydrocarbon chains of the double layers form an aggregate state commonly referred to as the L(beta) phase, where the motions of surfactant alkyl chains are effectively frozen out. These chains melt on heating over a temperature range which is solution composition dependent (ca. 51 to 67 degrees C), but in all cases leading to a liquid-like disordered hydrocarbon regime whilst retaining the overall lamellar structure (and in this state is termed L(alpha)). Above the L(alpha)/L(beta) chain ordering phase transition the tracer molecules reside within the bilayer, but below this transition (and depending on their water-oil solubility) they are completely or partly expelled. This interpretation is further supported by Heisenberg spin exchange experiments. The water-bilayer partitioning reflects both typical classical and nonclassical hydrophobic solvation depending on temperature and chain length of phenyl alcohols.  相似文献   

9.
A molecular-thermodynamic theory is developed to model the micellization of fluorocarbon surfactants in aqueous solutions, by combining a molecular model that evaluates the free energy of micellization of fluorocarbon surfactant micelles with a previously developed thermodynamic framework describing the free energy of the micellar solution. In the molecular model of micellization developed, a single-chain mean-field theory is combined with an appropriate rotational isomeric state model of fluorocarbon chains to describe the packing of the fluorocarbon surfactant tails inside the micelle core. Utilizing this single-chain mean-field theory, the packing free energies of fluorocarbon surfactants are evaluated and compared with those of their hydrocarbon analogues. We find that the greater rigidity of the fluorocarbon chain promotes its packing in micellar aggregates of low curvatures, such as bilayers. In addition, the mean-field approach is utilized to predict the average conformational characteristics (specifically, the bond order parameters) of fluorocarbon and hydrocarbon surfactant tails within the micelle core, and the predictions are found to agree well with the available experimental results. The electrostatic effects in fluorocarbon ionic surfactant micelles are modeled by allowing for counterion binding onto the charged micelle surface, which accounts explicitly for the effect of the counterion type on the micellar solution properties. In addition, a theoretical formulation is developed to evaluate the free energy of micellization and the size distribution of finite disklike micelles, which often form in the case of fluorocarbon surfactants. We find that, compared to their hydrocarbon analogues, fluorocarbon surfactants exhibit a greater tendency to form cylindrical or disklike micelles, as a result of their larger molecular volume as well as due to the greater conformational rigidity of the fluorocarbon tails. The molecular-thermodynamic theory developed is then applied to several ionic fluorocarbon surfactant-electrolyte systems, including perfluoroalkanoates and perfluorosulfonates with added LiCl or NH(4)Cl, and various micellar solution properties, including critical micelle concentrations (cmc's), optimal micelle shapes, and average micelle aggregation numbers, are predicted. The predicted micellar solution properties agree reasonably well with the available experimental results.  相似文献   

10.
ABSTRACT

Two top-down coarse-grained molecular simulation models for a chromonic liquid crystal, 3,6,7,10,11-hexa-(1,4,7-trioxa-octyl)-triphenylene, are tested. We use an extension of the well-known MARTINI model and develop a new coarse-grained model based on statistical associating fluid theory (SAFT)-γ perturbation theory. For both models, we demonstrate self-assembly in the isotropic phase of the chromonic and we test the effectiveness of both models in terms of the structures of the chromonic aggregates that are produced in solution and the thermodynamics of association. The latter is tested by calculations of the potential of mean force for dimers in solution, which measures the strength of molecular association. SAFT-γ provides valuable insights into the thermodynamics of assembly. Exploration of a range of interactions between unlike sites demonstrates that chromonic self-assembly only occurs in a small parameter space where the hydrophilic–lipophilic balance between aromatic core and ethylene oxide chains is optimal. Outside of this balance, chromonic self-assembly is replaced by the formation of conglomerates of molecules or short stacks.  相似文献   

11.
A surfactant bis[2-(10-undecenoyloxycarbonyl)ethyl] (p-vinylbenzoyl) methylammonium chloride formed a lamellar liquid crystal in native form and retained the structure after polymerization. Addition of heptadiene, of glycerylmonomethacrylate, and of both to the surfactant monomer gave an isotropic solution, which was transformed to a lamellar liquid crystal after polymerization. Low angle X-ray diffractometry was used to determine the interlayer spacing and to estimate the location of the added molecules. 1.6-Heptadiene was located between methyl group layers of the surfactant chains with 46 vol % of the molecules penetrating between the hydrocarbon chains of the surfactant. Addition of both the polar and the nonpolar monomer followed by polymerization caused the latter to be expelled from the space in between the chains.  相似文献   

12.
Dynamics of self-assembly and structural transitions in surfactant systems often involve a large span of length and time scales. A comprehensive understanding of these processes requires development of models connecting phenomena taking place on different scales. In this paper, we develop a multiscale model for formation and disintegration of spherical nonionic micelles. The study is performed under the assumption that the dominant mechanism of micelle formation (disintegration) is a stepwise addition (removal) of single monomers to (from) a surfactant aggregate. Different scales of these processes are investigated using a combination of coarse-grained molecular dynamics simulations, analytical and numerical solution of stochastic differential equations, and a numerical solution of kinetic equations. The removal of a surfactant from an aggregate is modeled by a Langevin equation for a single reaction coordinate, the distance between the centers of mass of the surfactant and the aggregate, with parameters obtained from a series of constrained molecular dynamics simulations. We demonstrate that the reverse process of addition of a surfactant molecule to an aggregate involves at least two additional degrees of freedom, orientation of the surfactant molecule and micellar microstructure. These additional degrees of freedom play an active role in the monomer addition process and neglecting their contribution leads to qualitative discrepancies in predicted surfactant addition rates. We propose a stochastic model for the monomer addition which takes the two additional degrees of freedom into account and extracts the model parameters from molecular dynamics simulations. The surfactant addition rates are determined from Brownian dynamics simulations of this model. The obtained addition and removal rates are then incorporated into the kinetic model of micellar formation and disintegration.  相似文献   

13.
Shchekin  A. K.  Volkov  N. A.  Koltsov  I. N.  Tretyakov  N. Yu.  Volkova  S. S.  Turnaeva  E. A. 《Colloid Journal》2021,83(4):518-529
Colloid Journal - A thermodynamic model has been formulated for the formation work of a molecular aggregate consisting of molecules of a nonionic surfactant and a solubilisate in a...  相似文献   

14.
Discontinuous molecular dynamics simulations are performed on homopolymer/solvent and surfactant/solvent systems. The homopolymer and surfactant molecules are modeled as freely jointed square-well chains. Solvent molecules are modeled as both hard spheres and square-well spheres. We explore how the various interaction parameters affect the types of phase behavior and micellization observed in the homopolymer/solvent and surfactant/solvent systems. Increasing the packing fraction of homopolymers in both hard-sphere solvents and square-well solvents increases the solvent's ability to dissolve homopolymers only when the segment-solvent interaction strength exceeds a critical value. Although only upper critical solution temperature (UCST) behavior is observed for homopolymers in hard-sphere solvents, both UCST and lower critical solution temperature (LCST) behavior are observed for homopolymers in square-well solvents, depending upon the interaction strengths and chain length. This indicates that it is necessary to account for the solvent-solvent attraction to model LCST behavior in supercritical CO2. Our simulation results on surfactants in hard-sphere solvents show that it is necessary to account for the interactions experienced by both the head and tail blocks in order to capture the essential features of surfactant/supercritical CO2 systems.  相似文献   

15.
Positively charged supramolecular aggregates formed in vacuo by n AOTNa (sodium bis(2-ethylhexyl)sulfosuccinate) molecules and n(c) additional sodium ions, i.e. [AOT(n)Na(n+n(c))](n(c)), have been investigated by molecular dynamics (MD) simulations for n = 1-20 and n(c) = 0-5. Statistical analysis of physical quantities like gyration radii, atomic B-factors and moment of inertia tensors provides detailed information on their structural and dynamical properties. Even for n(c) = 5, all stable aggregates show a reverse micelle-like structure with an internal solid-like core including sodium counterions and surfactant polar heads surrounded by an external layer consisting of the surfactant alkyl chains. Moreover, the aggregate shapes may be approximated by rather flat and elongated ellipsoids whose longer axis increases with n and n(c). The fragmentation patterns of a number of these aggregates have also been examined and have been found to markedly depend on the aggregate charge state. In one particular case, for which experimental findings are available in the literature, a good agreement is found with the present fragmentation data.  相似文献   

16.
The interactions of cationic gemini surfactants, 1,2-bis(alkyldimethylammonio)ethane dibromide (m-2-m: m is hydrocarbon chain length, m = 10 and 12), and an anionic polymer, sodium poly(styrene sulfonate) (PSS), have been characterized by several techniques such as tensiometry, fluorescence spectroscopy, and dynamic light scattering. The surface tension of gemini surfactant/PSS mixed systems decreases with surfactant concentration, reaching break points, which are taken as critical aggregation concentrations (cac). The surface tension at the cac of mixtures is higher than that of single surfactants, and it is found that at concentrations above the cac, the surfactant molecules are associated with the polymer in the bulk. The 12-2-12/PSS mixed system shows higher surface activity than both 10-2-10/PSS and the monomeric surfactant of dodecyltrimethylammonium bromide/PSS systems. Fluorescence measurements of these mixed systems suggest the formation of a complex with a highly hydrophobic environment in the bulk of the solution. Additionally, dynamic light scattering measurements show that the hydrodynamic diameter of the 12-2-12/PSS mixed system is smaller than that of PSS only at low concentration, indicating interactions between surfactant and polymer. These result from the electrostatic attraction between ammonium and sulfate headgroups as well as the hydrophobic interaction between their hydrocarbon chains.  相似文献   

17.
The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers’ thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.  相似文献   

18.
The self-assembling of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) in gas phase has been investigated by electrospray ionization- and matrix-assisted laser desorption/ionization mass spectrometry. Large surfactant clusters with an aggregation number close to that found in apolar media have been observed either as positive or negative ions. Moreover, the marked predominance of singly charged species as well as preliminary theoretical calculations strongly suggest an aggregate structure characterized by an internal hydrophilic core hosting the extra charge surrounded by an apolar shell constituted by the surfactant alkyl chains. This structure is similar to that of the more familiar reversed micelles formed when an appropriate surfactant is solubilized in apolar solvents. Finally, similar trends are observed independently either on the ionization technique or the polarity of the solvent used. This, together with the large dependence of the aggregation number on the flow rates, strongly indicates that self-assembling of the surfactant molecules occurs during the evaporation step.  相似文献   

19.
The structure of lysozyme-sodium dodecyl sulfate (SDS) complexes in solution is studied using small-angle X-ray scattering (SAXS). The SAXS data cannot be explained by the necklace and bead model for unfolded polypeptide chain interspersed with surfactant micelles. For the protein and surfactant concentrations used in the study, there is only marginal growth of SDS micelles as they complex with the protein. Being a small and rather rigid protein, lysozyme can penetrate the micellar core which is occupied by flexible and disordered paraffin chains and also the shell occupied by the hydrated head groups. A partially embedded swollen micellar model seems appropriate and describes well the scattering data. The SAXS intensity profiles are analyzed by considering the change in the electron scattering length density of the micellar core and shell due to complexation with protein and treating the intermicellar interaction using rescaled mean spherical approximation (RMSA) for charged spheres.  相似文献   

20.
The impact of alcohol additives on the self-assembly of surfactants in supercritical carbon dioxide is investigated using lattice Monte Carlo simulations. We observe that all studied (model) alcohols reduce the critical micelle concentration. The reduction is stronger the longer the hydrocarbon chain of the alcohol, and the higher the alcohol concentration. Short-chain alcohols are found to concentrate in the surfactant layer of the aggregates, replacing surfactant molecules and leading to a strong decrease of the aggregation number and a large increase of the number of aggregates. On the other hand, only a small number of alcohol molecules with longer chain length are found in the aggregates, leading to a slight increase in the aggregation number. However, structural properties such as size and density profiles of aggregates at the same aggregation number are not influenced markedly. Consequently, short-chain alcohols act as cosurfactants, directly influencing the properties of the aggregates, while alcohols with longer hydrocarbon chains work as cosolvents, altering the properties of the solvent. However, the transition between both extremes is gradual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号