首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
化石燃料的大量开采和利用所导致的能源与环境问题是当今社会可持续发展必须面对的两大挑战. 燃料电池通过电化学反应将燃料中的化学能直接转化为电能, 是目前清洁高效的可再生能源转化装置. 光助燃料电池将光响应成分引入到燃料电池中, 可以实现光能/电能和化学能/电能的双重转化, 从而有效提高能源利用效率, 是未来能源转化装置的发展方向, 在实际应用方面具有重要意义和广阔前景. 本文对光助燃料电池进行了简要综述, 重点介绍了我们小组近些年来在该领域的相关研究进展, 总结了目前存在的一些问题, 并对其发展趋势进行了展望.  相似文献   

2.
Self‐replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self‐replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self‐replication was explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light‐switchable colloids was considered where light is used to control the interactions. Conditions under which self‐replication can be significantly more effective under non‐equilibrium, cyclic energy delivery than under equilibrium constant energy conditions were identified. Optimal self‐replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates.  相似文献   

3.
低自由能固体表面的制备及其应用*   总被引:7,自引:0,他引:7  
低自由能表面具有一些独特的性能,在工业和日常生活中具有广泛的应用,本文就低自由能表面的制备及其发展概况进行综述,共引用文献83篇。  相似文献   

4.
Self‐replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self‐replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self‐replication was explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light‐switchable colloids was considered where light is used to control the interactions. Conditions under which self‐replication can be significantly more effective under non‐equilibrium, cyclic energy delivery than under equilibrium constant energy conditions were identified. Optimal self‐replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates.  相似文献   

5.
The Monte Carlo minimization (MCM) method of Li and Scheraga is an efficient tool for generating low energy minimized structures of peptides, in particular the global energy minimum (GEM). In a recent article we proposed an enhancement to MCM, called the free energy Monte Carlo minimization (FMCM) procedure. With FMCM the conformational search is carried out with respect to the harmonic free energy, which approximates the free energy of the potential energy wells around the energy minimized structures (these wells are called localized microstates). In this work we apply both methods to the pentapeptide Leu-enkephalin described by the potential energy function ECEPP, and study their efficiency in identifying the GEM structure as well as the global harmonic free energy (GFM) structure. We also investigate the efficiency of these methods to generate localized microstates, which pertain to different energy and harmonic free energy intervals above the GEM and GFM, respectively. Such microstates constitute an important ingredient of our statistical mechanical methodology for analyzing nuclear magnetic resonance data of flexible peptides. Aspects of this methodology related to the stability properties of the localized microstates are examined. © 1997 by John Wiley & Sons, Inc.  相似文献   

6.
《Liquid crystals》1997,23(2):193-203
In this paper the director configurations and the free energies of a nematic droplet with a surface normal anchoring condition are calculated numerically. For this surface anchoring, a transition occurs between the radial and axial structures with respect to an applied field. In the calculation of the director configurations, the position of a disclination has been fixed. Comparing the free energies for different disclinations, the stable position which gives the minimum free energy is found. In calculating the free energy of a droplet, it is assumed that the free energy density of the nematic phase does not exceed the isotropic free energy density, so that the large distortion in the vicinity of the disclination causes a nematic-isotropic transition and the free energy density of the disclination core becomes equal to the isotropic free energy density. The director configuration in a droplet is calculated as a function of an applied field for different isotropic free energy densities, elastic constant ratios and droplet shapes. The relation between the radial-axial structure transition and these factors are clarified.  相似文献   

7.
Journal of Solid State Electrochemistry - In order to solve the energy crisis, energy storage technology needs to be continuously developed. As an energy storage device, the battery is more widely...  相似文献   

8.
Although the many-body expansion (MBE) approach is widely applied to estimate the energy of large systems containing weak interactions, it is inapplicable to calculating the energies of covalent or metal clusters. In this work, we propose an interaction many-body expansion (IMBE) to calculate the energy of atomic clusters containing covalent bonds. In this approach, the energy of a system is expressed as the sum of the energy of atoms and the interaction energy between the atom and its surrounding atoms. The IMBE method is first applied to calculate the energies of nitrogen clusters, in which the interatomic interactions are truncated to four-body terms. The results show that the IMBE approach could significantly reduce the energy error for nitrogen clusters compared with the traditional MBE method. The weak size and structure dependence of the IMBE error with respect to DFT calculations indicates the IMBE method has good potential application in estimating energy of large covalent systems.  相似文献   

9.
The ability to exploit energy autonomously is one of the hallmarks of life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. In contrast, despite electrical energy being an attractive energy source to power nanosystems, its autonomous harnessing has received little attention. Herein we consider an operation mode that allows the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.  相似文献   

10.
Solar energy can deliver a large amount of the worldwide demand of energy For large scale application of solar energy, the rational and intelligent use of energy is necessary. In both cases new improved materials and systems are needed. Transparent polymers can play an important role to fulfil this goal.  相似文献   

11.
Recently, we developed an efficient free energy simulation technique, the simulated scaling (SS) method [H. Li et al., J. Chem. Phys. 126, 024106 (2007)], in the framework of generalized ensemble simulations. In the SS simulations, random walks in the scaling parameter space are realized so that both phase space overlap sampling and conformational space sampling can be simultaneously enhanced. To flatten the distribution in the scaling parameter space, in the original SS implementation, the Wang-Landau recursion was employed due to its well-known recursion capability. In the Wang-Landau recursion based SS free energy simulation scheme, at the early stage, recursion efficiencies are high and free energy regions are quickly located, although at this stage, the errors of estimated free energy values are large; at the later stage, the errors of estimated free energy values become smaller, however, recursions become increasingly slow and free energy refinements require very long simulation time. In order to robustly resolve this efficiency problem during free energy refinements, a hybrid recursion strategy is presented in this paper. Specifically, we let the Wang-Landau update method take care of the early stage recursion: the location of target free energy regions, and let the adaptive reweighting method take care of the late stage recursion: the refinements of free energy values. As comparably studied in the model systems, among three possible recursion procedures, the adaptive reweighting recursion approach is the least favorable one because of its low recursion efficiency during free energy region locations; and compared to the original Wang-Landau recursion approach, the proposed hybrid recursion technique can be more robust to guarantee free energy simulation efficiencies.  相似文献   

12.
The exploit of low-grade energies, such as osmotic energy, thermal energy, and mechanical energy, is of great importance to alleviate the energy crisis. However, current energy harvesting technologies are generally plagued by their low efficiencies. Nanofluidic technology that based on the regulation of ion transport at the nanoscale has shown great potential in energy fields. In this review, we focus on the nanochannel-based energy harvesting, including the selectivity and permeability of the nanochannel, the theoretical output energy, and the difference between single- and multi-pore systems. Three typical energy harvesting modes are then introduced. Finally, the challenges are briefly summarized and an outlook of the nanochannel-based energy harvesting technology is provided.  相似文献   

13.
The energy transfer of highly excited ozone molecules is investigated by means of classical trajectories. Both intramolecular energy redistribution and the intermolecular energy transfer in collisions with argon atoms are considered. The sign and magnitude of the intramolecular energy flow between the vibrational and the rotational degrees of freedom crucially depend on the projection K(a) of the total angular momentum of ozone on the body-fixed a axis. The intermolecular energy transfer in single collisions between O(3) and Ar is dominated by transfer of the rotational energy. In accordance with previous theoretical predictions, the direct vibrational de-excitation is exceedingly small. Vibration-rotation relaxation in multiple Ar+O(3) collisions is also studied. It is found that the relaxation proceeds in two clearly distinguishable steps: (1) During the time between collisions, the vibrational degrees of freedom are "cooled" by transfer of energy to rotation; even at low pressure equilibration of the internal energy is slow compared to the time between collisions. (2) In collisions, mainly the rotational modes are "cool" by energy transfer to argon.  相似文献   

14.
In linear hydrogen atomic chains, plasmon resonances and plasmon‐induced charge transport are studied by time‐dependent density functional theory. For the large linear chain, it is a general phenomenon that, in the longitudinal excitation, there are high‐energy resonances and a large low‐energy resonance. The energy of the large low‐energy resonance conforms to the results calculated by the classical Drude model. In order to explain the formation mechanism of the high‐energy resonances, we present a simple harmonic oscillator model. This model may reasonably account for the relationship between low‐energy and high‐energy resonances, and has a certain degree of universality. As the interatomic distance decreases, the current shows a gradual transition from insulator to metal. The current enhancement mainly depends on the local field enhancement associated with plasmon excitation, and the enhanced electron delocalization effect as a result of the decrease of the interatomic distance. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.  相似文献   

16.
梁骥  闻雷  成会明  李峰 《电化学》2015,21(6):505
电化学储能材料是电化学储能器件发展及性能提高的关键之一. 碳材料在各种电化学储能体系中都起到了极为重要的作用,特别是近期出现的各类新型碳材料为电化学储能的发展带来了新动力,并展现了广阔的应用前景. 本文综述了碳材料,特别是以碳纳米管和石墨烯为代表的纳米碳材料,在典型电化学储能器件(锂离子/钠离子电池、超级电容器和锂硫电池等)、柔性电化学储能和电化学催化等领域的研究进展,并对碳材料在这些领域的应用前景进行了展望.  相似文献   

17.
由于能源危机与环境问题,全球能源的消耗正逐渐从传统化石能源转向其它清洁高效能源。高效清洁能源的存储是电动汽车和智能电网的关键技术,对新能源、新材料和新能源汽车国家战略新兴产业的发展具有重要意义。锂离子电池是目前广泛应用的一种能源存储器件。电动汽车和智能电网对能量密度、功率密度、循环寿命和成本等方面的要求越来越高,传统的锂离子电池面临巨大挑战,发展下一代能源存储技术迫在眉睫。高能量密度的锂硫电池和锂空气电池,低成本、高安全性的室温钠离子电池受到了越来越多的关注。本文简要总结了近年来锂硫电池、锂空气电池和钠离子电池及其关键电极材料的研究进展,并对这些新型能源存储技术存在的问题和未来的前景做出了分析和展望。  相似文献   

18.
Studies have been made of the energy release during the decomposition of metastable ions in the mass spectra of pyrazine, pyrazine-d4, pyrimidine, pyrimidine-d4, pyridazine and symmtriazine. In all the compounds except pyridazine very small amounts of energy have been measured in some processes. The recorded energy release of 187 μeV for a transition of the symmtriazine molecular ion is the smallest energy release yet recorded. In the case of pyrazine and pyrimidine the energy release in one transition was found to be smaller than in the corresponding transition in the -d4 analogues.  相似文献   

19.
In order to study the dynamics of double photoionization of helium, we report new coincidence measurements between low energy electrons and doubly charged ions, from 78 to 95 eV photon energy. We show that the range of validity of the Wannier theory depends upon the observable. For the exponentn of the threshold law, this range amounts to some 3 eV above onset, thus confirming previous published experimental work. In contrast, the energy distribution of the two outgoing electrons is found flat, within 20%, in agreement with the theoretical predictions, but in a 15 eV energy range above threshold.  相似文献   

20.
The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号