首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intramolecular reaction of allylsilanes and allylstannanes with alkynes proceeds catalytically in the presence of Pt(II), Pd(II), Ru(II), and Au(III) chlorides. Although more limited, AgOTf also catalyzes the cyclization. Usually, PtCl2 as the catalyst in methanol or acetone gives the best results. The reaction proceeds by exo attack of the allyl nucleophile on the alkyne to form five- or six-membered ring carbocycles. The reaction generally proceeds with anti stereoselectivity. However, a terminally substituted trimethylsilyl derivative reacts by a syn-type addition. The intermediate alkenylpalladium complex has been trapped with allyl chloride to form an allylated derivative with an additional carbon-carbon bond.  相似文献   

2.
The mechanism of direct amination of allyl alcohol by a palladium triphenylphosphite complex has been explored. Labelling studies show that the reaction proceeds through a π‐allylpalladium intermediate. A second‐order dependence of reaction rate on allyl alcohol concentration was observed. Kinetic isotope effect studies and ESI‐MS studies are in agreement with a reaction proceeding through a palladium hydride intermediate in which both O–H bond and C–O bond cleavages are involved in rate‐determining steps. A stereochemical study supports an outer‐sphere nucleophilic attack of the π‐allylpalladium intermediate giving complete chiral transfer from starting material to product.  相似文献   

3.
A photo‐induced carboxylation reaction of allylic C?H bonds of simple alkenes with CO2 is prompted by means of a ketone and a copper complex. The unique carboxylation reaction proceeds through a sequence of an endergonic photoreaction of ketones with alkenes forming homoallyl alcohol intermediates and a thermal copper‐catalyzed allyl transfer reaction from the homoallyl alcohols to CO2 through C?C bond cleavage.  相似文献   

4.
A rhodium-catalyzed silylation reaction of carbon-cyano bonds using disilane has been developed. Under these catalytic conditions, carbon-cyano bonds in aryl, alkenyl, allyl, and benzyl cyanides bearing a variety of functional groups can be silylated. The observation of an enamine side product in the silylation of benzyl cyanides and related stoichiometric studies indicate that the carbon-cyano bond cleavage proceeds through the deinsertion of silyl isocyanide from eta(2)-iminoacyl complex B. Knowledge gained from these studies has led to the development of a new intramolecular biaryl coupling reaction in which aryl cyanides and aryl chlorides are cross-coupled.  相似文献   

5.
A regioselective oxidation of allylic C–H bond to C–O bond catalyzed by copper (I) was developed with diacyl peroxides as oxidants. The oxidation of allylic C–H bond was accomplished with good yield and regioselectivity under mild reaction conditions. This method has a broad substrate scope including cyclic olefins, terminal and internal acyclic olefins and allyl benzene compounds. The reaction proceeds by a radical mechanism as suggested by spin trapping experiments.  相似文献   

6.
Iridium complexes were found to promote the conversion of allyl homoallyl ethers to gamma,delta-unsaturated carbonyl compounds. For example, treatment of 1-allyl-1-allyloxycyclohexane in the presence of catalytic amounts of [Ir(cod)Cl](2), PCy(3), and Cs(2)CO(3) in toluene at 100 degrees C afforded 4-cyclohexyliden-2, 3-dimethylbutanal in 74% yield. The reaction presumably proceeds through double bond migration to allyl vinyl ethers, which then undergo the Claisen rearrangement.  相似文献   

7.
The boron trifluoride tetrahydrofuranate-catalyzed cationic polymerization of allyl glycidyl ether in carbon tetrachloride proceeds via an oxirane cycle to form initially cyclic products and, at later stages, high-molecular-mass products. In the case of 1,2-dimethoxyethane, the polymerization of allyl glycidyl ether occurs via insertion of the monomer into a dissociated bond of a Lewis acid-dimethoxyethane complex and yields a linear polymer with end methoxy groups.  相似文献   

8.
Palladium-catalyzed allylic substitution of aryl allyl chlorides with aromatic and heteroaromatic aldehydes was performed in the presence of hexamethylditin. This procedure involves palladium-catalyzed formation of transient allylstannanes followed by generation of a bis(allyl)palladium intermediate, which subsequently reacts with the aldehyde electrophile. The catalytic substitution reaction proceeds with high regio- and stereoselectivity. The stereoselectivity is affected by the steric and electronic properties of the allylic substituents. Various functionalities including NO(2), COCH(3), Br, and F groups are tolerated under the applied catalytic conditions. Density functional calculations at the B3PW91/DZ+P level of theory were applied to study the steric and electronic effects controlling the regio- and stereoselectivity of the electrophilic addition. The development of the selectivity was studied by modeling the various bis(allyl)palladium species occurring in the palladium-catalyzed substitution of cinnamyl chloride with benzaldehyde. It was found that the electrophilic attack proceeds via a six-membered cyclic transition state, which has a pronounced chair conformation. The regioselectivity of the reaction is controlled by the location of the phenyl group on the eta(1)-allyl moiety of the complex. The stereoselectivity of the addition process is determined by the relative configuration of the phenyl substituents across the developing carbon-carbon bond. The lowest energy path corresponds to the formation of the branched allylic isomer with the phenyl groups in anti configuration, which is in excellent agreement with the experimental findings.  相似文献   

9.
The reaction of alkynes with [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Me, Ph, Cy) affords, depending on the structure of the alkyne and the substituent of the phosphine ligand, allyl carbene or butadienyl carbene complexes. These reactions involve the migration of the phosphine ligand or a facile 1,2 hydrogen shift. Both reactions proceed via a metallacyclopentatriene complex. If no alpha C[bond]H bonds are accessible, allyl carbenes are formed, while in the presence of alpha C[bond]H bonds butadienyl carbenes are typically obtained. With diphenylacetylene, on the other hand, a cyclobutadiene complex is formed. A different reaction pathway is encountered with HC[triple bond]CSiMe(3), ethynylferrocene (HC[triple bond]CFc), and ethynylruthenocene (HC[triple bond]CRc). Whereas the reaction of [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Ph and Cy) with HC[triple bond]CSiMe(3) affords a vinylidene complex, with HC[triple bond]CFc and HC[triple bond]CRc this reaction does not stop at the vinylidene stage but subsequent cycloaddition yields allenyl carbene complexes. This latter C[bond]C bond formation is effected by strong electronic coupling of the metallocene moiety with the conjugated allenyl carbene unit, which facilitates transient vinylidene formation with subsequent alkyne insertion into the Ru[double bond]C bond. The vinylidene intermediate appears only in the presence of bulky substituents of the phosphine coligand. For the small R=Me, head-to-tail coupling between two alkyne molecules involving phosphine migration is preferred, giving the more usual allyl carbene complexes. X-ray structures of representative complexes are presented. A reasonable mechanism for the formation of both allyl and allenyl carbenes has been established by means of DFT calculations. During the formation of allyl and allenyl carbenes, metallacyclopentatriene and vinylidene complexes, respectively, are crucial intermediates.  相似文献   

10.
《Tetrahedron》1987,43(17):3903-3915
Treatment of alkyl allyl carbonates with a phosphine-free palladium catalyst in acetonltrile affords ketones or aldehydes in high yields. This new method of oxidation of alcohols via allyl carbonates can be applied to various alcohols except simple primary alcohols. The reaction proceeds under neutral conditions and hence various acid- or base-sensitive functional groups are not affected during the reaction. Ruthenium hydride complex is also an effective catalyst. Direct dehydrogenatlon of secondary or allylic alcohols was carried out by the reaction with allyl methyl carbonate by the catalysis of the ruthenium complex. 1,4-Diols and 1,5-diols are converted to lactones with excess allyl methyl carbonate.  相似文献   

11.
The synthesis of triazoles via the three-component coupling reaction of unactivated terminal alkynes, allyl carbonate, and trimethylsiyl azide under the Pd(0)-Cu(I) bimetallic catalyst is developed. The reaction most probably proceeds through the formation of a pi-allylpalladium azide complex and a copper-acetylide followed by a successive [3 + 2] cycloaddition. The deallylation of the resulting allyltriazoles proceeds very easily by the Ru-catalyzed isomerization followed by the ozonolysis of the resulting propenyltriazoles to give the triazoles in high yields.  相似文献   

12.
[structure: see text] Alpha-phosphonozirconacyclopentenes or alpha-borylzirconacyclopentenes react by bromination, iodination, allylation, and propargylation to generate unique vinyl boronates and vinyl phosphonates not obtainable by other methods. The reaction proceeds in two steps, with both high regio- and stereoselectivity. With the vinyl boronates, the Zr-Csp2 bond is initially cleaved by 1 equiv of electrophile. With the phosphonates, either the Zr-Csp2 bond (allyl bromide, Br(2)) or the Zr-Csp3 bond (I(2), propargyl bromide) may be initially cleaved. The addition of a second equivalent of an electrophile results in disubstitution.  相似文献   

13.
Andres Goeta  Hummad Shah 《Tetrahedron》2006,62(15):3582-3599
The intramolecular cyclisation of tethered allyl bromides onto terminal alkynes mediated by metallic indium proceeds smoothly and cleanly in mixtures of THF and H2O to give unsaturated carbocycles and heterocycles in good yield. Alternatively, the cyclisation may be carried out in anhydrous THF with the aid of acid catalysis. The reaction is also mediated by a range of indium salts and proceeds with substoichiometric quantities of indium in the presence of a co-reductant. Deuteration studies show that the reaction proceeds via a concerted syn carboindination of the carbon-carbon triple bond to give an intermediate, which is protonated in situ.  相似文献   

14.
The tandem isomerization-aldolization reaction between allyl alcohol and formaldehyde mediated by [Fe(CO)3] was studied with the density functional B3LYP method. Starting from the key [(enol)Fe(CO)3] complex, several reaction paths for the reaction with formaldehyde were explored. The results show that the most favorable reaction path involves first an enol/allyl alcohol ligand-exchange process followed by direct condensation of formaldehyde with the free enol. During this process, formation of the new C-C bond takes place simultaneously with a proton transfer between the enol and the aldehyde. Therefore, the role of [Fe(CO)3] is to catalyze the allyl alcohol to enol isomerization affording the free enol, which adds to the aldehyde in a carbonyl-ene type reaction. Similar results were obtained for the reaction between allyl alcohol and acetaldehyde.  相似文献   

15.
Fully substituted triazoles were synthesized via the four-component coupling reaction of unactivated silylacetylenes, two equivalents of allyl carbonates, and trimethylsilyl azide in the presence of a Pd(0)-Cu(I) bimetallic catalyst. Various trisubstituted 1,2,3-triazoles were obtained in good yields. The reaction most probably proceeds through the [3+2] cycloaddition reaction between the alkynylcopper species and azide followed by the cross-coupling reaction between the vinylcopper intermediate and π-allylpalladium complex.  相似文献   

16.
Selective cleavage of a silicon–carbon bond in tetraorganosilanes is still a great challenge. A new type of Si−C(sp3) bond cleavage in bench-stable (aminomethyl)silanes with common organolithium reagents as nucleophiles has now been identified. Suitable leaving groups are benzyl, allyl, and phenylthiomethyl groups. A β-donor function and polar solvents are essential for the reaction. Simple switching between α-deprotonation and substitution is possible through slight modifications of the reaction conditions. The stereochemical course of the reaction was elucidated by using a silicon-chiral benzylsilane. The new transformation proceeds stereospecifically with inversion of configuration and can be used for the targeted synthesis of enantiomerically pure tetraorganosilanes, which are otherwise difficult to access. Quantum chemical calculations provided insight into the mechanism of the new substitution.  相似文献   

17.
Wallner OA  Szabó KJ 《Organic letters》2004,6(11):1829-1831
Palladium pincer complex (1)-catalyzed stannylation of allyl chloride, phosphonate, and epoxide substrates (4a-h) could be performed with hexaalkylditin reagents (3) under mild neutral reaction conditions. This catalytic reaction proceeds via palladium(II) intermediates without involvement of allyl-palladium complexes, and therefore the allylstannane product does not interfere with the palladium catalyst. Use of a combined catalytic system (1 + 2) allowed the development of an effective one-pot procedure for allylation of aldehyde and imine electrophiles. [reaction: see text]  相似文献   

18.
The cycloaddition reaction between 2,3-dimethylbuta-1,3-diene and allyl methacrylate proceeds by the second order kinetics. The rate constants increase with the increase in the excess of one of the reactants. The change in the effective rate constants is described by the Michaelis-Menten equation indicating that the reaction proceeds through the initial equilibrium stage of formation of an intermediate complex which then transforms into the product. The effective rate constants, the equilibrium constants of formation of the intermediate complex, and the rate constant of its transformation into the reaction product were determined, as well as the thermodynamic parameters of the formation of the intermediate complex and the activation parameters of the transformation of the intermediate complex into the product. The limiting stage of the reaction is established and its mechanism is suggested.  相似文献   

19.
The possibility for AuIII σ-cyclopropyl complexes to undergo ring-opening and give π-allyl complexes was interrogated. The transformation was first evidenced within (P,C)-cyclometalated complexes, it occurs within hours at −50 °C. It was then generalized to other ancillary ligands. With (N,C)-cyclometalated complexes, the rearrangement occurs at room temperature while it proceeds already at −80 °C with a dicationic (P,N)-chelated complex. Density Functional Theory (DFT) calculations shed light on the mechanism of the transformation, a disrotatory electrocyclic ring-opening. Intrinsic Bond Orbital (IBO) analysis along the reaction profile shows the cleavage of the distal σ(CC) bond to give a π-bonded allyl moiety. Careful inspection of the structure and bonding of cationic σ-cyclopropyl complexes support the possible existence of C−C agostic interactions at AuIII.  相似文献   

20.
The [1.1.1]propellane radical cation 1(?+), generated by radiolytic oxidation of the parent compound in argon and Freon matrices at low temperatures, undergoes a spontaneous rearrangement to form the distonic 1,1-dimethyleneallene (or 2-vinylideneallyl) radical cation 3(?+) consisting of an allyl radical substituted at the 2-position by a vinyl cation. In similar matrix studies, it is found that the isomeric dimethylenecyclopropane radical cation 2(?+) also rearranges to 3(?+). The unusual molecular and electronic structure of 3(?+) has been established by the results of ESR, UV-vis, and IR spectroscopic measurements in conjunction with detailed theoretical calculations. Also of particular interest is an NIR photoinduced reaction by which 3(?+) is cleanly converted to the vinylidenecyclopropane radical cation 4(?+), a process that can be represented in terms of a single electron transfer from the allyl radical to the vinyl cation followed by allyl cation cyclization. The specificity of this photochemical reaction provides additional strong chemical evidence for the structure of 3(?+). Theoretical calculations reveal the decisive role of vibronic coupling in shaping the potential energy surfaces on which the observed ring-opening reactions take place. Thus vibronic interaction in 1(?+) mixes the (2)A(1)' ground state, characterized by its "non-bonding" 3a(1)' SOMO, with the (2)E' first excited state resulting in the destabilization of a lateral C-C bond and the initial formation of the methylenebicyclobutyl radical cation 5(?+). The further rearrangement of 5(?+) to 3(?+) occurs via 2(?+) and proceeds through two additional lateral C-C bond cleavages characterized by transition states of extremely low energy, thereby explaining the absence of identifiable intermediates along the reaction pathway. In these consecutive ring-opening rearrangements, the "non-bonding" bridgehead C-C bond in 1(?+) is conserved and ultimately transformed into a normal bond characterized by a shorter C-C bond length. This work provides strong support for the Heilbronner-Wiberg interpretation of the vibrational structure in the photoelectron spectrum of 1 in terms of vibronic coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号