首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The atomic force microscope (AFM) has been used to measure surface forces between silicon nitride AFM tips and individual nanoparticles deposited on substrates in 10(-4) and 10(-2) M KCl solutions. Silica nanoparticles (10 nm diameter) were deposited on an alumina substrate and alumina particles (5 to 80 nm diameter) were deposited on a mica substrate using aqueous suspensions. Ionic concentrations and pH were used to manage attractive substrate-particle electrostatic forces. The AFM tip was located on deposited nanoparticles using an operator controlled offset to achieve stepwise tip movements. Nanoparticles were found to have a negligible effect on long-range tip-substrate interactions, however, the forces between the tip and nanoparticle were detectable at small separations. Exponentially increasing short-range repulsive forces, attributed to the hydration forces, were observed for silica nanoparticles. The effective range of hydration forces was found to be 2-3 nm with the decay length of 0.8-1.3 nm. These parameters are in a good agreement with the results reported for macroscopic surfaces of silica obtained using the surface force apparatus suggesting that hydration forces for the silica nanoparticles are similar to those for flat silica surfaces. Hydration forces were not observed for either alumina substrates or alumina nanoparticles in both 10(-4) M KCl solution at pH 6.5 and 10(-2) M KCl at pH 10.2. Instead, strong attractive forces between the silicon nitride tip and the alumina (nanoparticles and substrate) were observed.  相似文献   

2.
Adhesion hysteresis commonly occurs at the nanoscale in humid atmospheres, yet mechanisms are not entirely understood. Here, the adhesion forces between silicon (111) oxide surfaces and tungsten oxide probes have been examined using interfacial force microscopy. The results show that the adhesion forces during surface approach and separation differ not only in magnitude but also in mechanism, arising mainly from capillary and electrostatic forces, respectively. Surface contact leads to a transient intersurface potential on dewetting. This mechanism of adhesion hysteresis differs in not relying singly on hysteretic wetting. Furthermore, by biasing the surfaces, nonadditivity is demonstrated between the capillary and electrostatic forces at the onset of condensation. These results hold important implications on the interpretation of force in nanoprobe geometries in humid atmospheres.  相似文献   

3.
The importance of substrate chemistry and structure on supported phospholipid bilayer design and functionality is only recently being recognized. Our goal is to investigate systematically the substrate-dependence of phospholipid adsorption with an emphasis on oxide surface chemistry and to determine the dominant controlling forces. We obtained bulk adsorption isotherms at 55 degrees C for dipalmitoylphosphatidylcholine (DPPC) at pH values of 5.0, 7.2, and 9.0 and at two ionic strengths with and without Ca(2+), on quartz (alpha-SiO(2)), rutile (alpha-TiO(2)), and corundum (alpha-Al(2)O(3)), which represent a wide a range of points of zero charge (PZC). Adsorption was strongly oxide- and pH-dependent. At pH 5.0, adsorption increased as quartz < rutile approximately corundum, while at pH 7.2 and 9.0, the trend was quartz approximately rutile < corundum. Adsorption decreased with increasing pH (increasing negative surface charge), although adsorption occurred even at pH > or = PZC of the oxides. These trends indicate that adsorption is controlled by attractive van der Waals forces and further modified by electrostatic interactions of oxide surface sites with the negatively charged phosphate ester (-R(PO(4)-)R'-) portion of the DPPC headgroup. Also, the maximum observed adsorption on negatively charged oxide surfaces corresponded to roughly two bilayers, whereas significantly higher adsorption of up to four bilayers occurred on positively charged surfaces. Calcium ions promote adsorption beyond a second bilayer, regardless of the sign of oxide surface charge. We develop a conceptual model for the structure of the electric double layer to explain these observations.  相似文献   

4.
Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH-capped films. Wherever possible, DLVO theory was used to fit the measured surface forces and apparent surface potentials and surface charge densities were calculated.  相似文献   

5.
A composite of multi-walled carbon nanotube/tungsten oxide (MWCNT/WO(3)) has been successfully synthesized. The prepared composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The catalytic activity was investigated by rhodamine B degradation under solar irradiation. The influence of various degradation parameters such as solar illumination time, initial dye concentration, dosage and pH was investigated. It was found that the composite exhibits an enhanced photocatalytic activity as compared with WO(3) and a mechanical mixture of MWCNTs and WO(3). The enhancement in photocatalytic performance of the MWCNT/WO(3) composite has been explained based on adsorption ability and electron transportation as a result of a strong interaction between WO(3) and MWCNTs. Besides, MWCNTs acts as dispersing agent preventing WO(3) from agglomerating during the catalytic process, providing a high active surface area of the catalyst. A reasonable mechanism for the enhanced reactivity was proposed.  相似文献   

6.
We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with ? resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force-distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with ?-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal-ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg-Healy-Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force-distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)(3) phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.  相似文献   

7.
A systematic study of the surface forces between a cellulose sphere and cellulose thin films of varying crystallinity has been conducted as a function of ionic strength and pH. Semicrystalline cellulose II surfaces and amorphous cellulose films were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water. Crystalline cellulose I surfaces were prepared by spin-coating wafers with aqueous suspensions of sulfate-stabilized cellulose I nanocrystals. These preparation methods produced thin, smooth films suitable for surface forces measurements. The interaction with the cellulose I was monotonically repulsive at pH 3.5, 5.8, and 8.5 and at 0.1, 1, and 10 mM ionic strengths. This was attributed to the presence of strongly ionizable sulfur-containing groups on the cellulose nanocrystal surfaces. The amorphous film typically showed a steric interaction up to 100 nm away from the interface that was independent of the solution conditions. A range of surface forces were successfully measured on the semicrystalline cellulose II films; attractive and repulsive regimes were observed, depending on pH and ionic strength, and were interpreted in terms of van der Waals and electrostatic interactions. Clearly, the forces acting near cellulose surfaces are very dependent on the way the cellulose surface has been prepared.  相似文献   

8.
XRD (X-ray diffraction), BET (Brunauer-Emmett-Teller), LRS (laser Raman spectra), XPS (X-ray photoelectron spectroscopy), and TPR (temperature-programmed reduction) are used to investigate the surface properties of CuO/WO3/Ce(0.5)Zr(0.5)O2 samples. The results indicate that (1) tungsten oxide can be highly dispersed on Ce(0.5)Zr(0.5)O2 (denoted as CZ hereafter) solid solution, with a dispersion capacity of about 0.8 mmol WO(3)/(100 m2 CZ), and comparatively, the supported tungsten oxide species are preferentially interacted with ceria component on the surface of CZ; (2) for CuO/WO3/CZ samples with a half-monolayer WO3 loading, i.e., xCu-0.4W-CZ series, the surface of CZ is only partially covered by the preloaded WO3) and the supported copper oxide species are dispersed on the remaining surface vacant sites on CZ as well as on top of the preloaded tungsten oxide, while for the samples preloaded with a full-monolayer WO3, i.e., xCu-0.8W-CZ series, only dispersed on the top of the preloaded tungsten oxide monolayer; (3) the effect of the loading amount of WO3 on the reduction property of Cu2+ ions in a series of CuO/WO3/CZ samples has been observed and tentatively attributed to the formation of WO3 monolayer on CZ and the different coordination environments of the dispersed Cu2+ ions are discussed on the basis of the consideration of the incorporation model proposed previously (Chen, Y.; Zhang, L. Catal. Lett. 1992, 12, 51).  相似文献   

9.
We report the investigation of surface forces between polyelectrolyte multilayers of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) assembled on mica surfaces during film buildup using a surface force apparatus. Up to four polyelectrolyte layers were prepared on each surface ex situ, and the surface interactions were measured in 10(-4) M KBr solutions. The film thickness under high compressive loads (above 2000 microN/m) increased linearly with the number of deposited layers. In all cases, the interaction between identical surfaces at large separations (>100 A from contact) was dominated by electrostatic double-layer repulsion. By fitting DLVO theory to the experimental force curves, the apparent double-layer potential of the interacting surfaces was calculated. At shorter separations, an additional non-DLVO repulsion was present due to polyelectrolyte chains extending some distance from the surface into solution, thus generating an electrosteric type of repulsion. Forces between dissimilar multilayers (i.e., one of the multilayers terminated with PSS and the other with PAH) were attractive at large separations (30-400 A) owing to a combination of electrostatic attraction and polyelectrolyte bridging.  相似文献   

10.
The interaction between cellulose surfaces in aqueous solution has been measured using colloidal probe microscopy. Cellulose thin films with varying charge through carboxyl group substitution were used in this study with the surface forces fit to DLVO theory. It was found that the surface potential increased, as expected, with increasing carboxyl substitution. Furthermore, for a given degree of substitution, the surface potential increased as a function of increasing pH. At low pH, the surface forces interaction were attractive and could be fit to the non-retarded Hamaker equation using a constant of 3 x 10(-21) J. At pH greater than 5, the force interactions were monotonically repulsive, regardless of the ionic strength of the solution for all charge densities of the cellulose thin films. The adsorption of polyDADMAC to these charged cellulose films was also investigated using the quartz crystal microbalance. It was found that for the low charge film, a low surface excess of PDADMAC was sensed and that the adsorbed conformation was essentially flat. However for the higher charged cellulose film, a spontaneous de-swelling was observed resulting in no possibility of quantitatively determining the sensed mass using QCM.  相似文献   

11.
The surface charging properties of polycrystalline α-alumina fibres in aqueous electrolyte solutions have been investigated by direct force and streaming potential measurements. The presence of both Al and Si on the surface of the fibres resulted in a chemically heterogeneous surface. The heterogeneous distribution of Si resulted in large attractive forces between the fibres at moderate to low pH values and a pzc/iep at a pH value of approximately 5.5. The origin of this force was electrostatic in nature as the force profiles were well described by the DLVO theory of colloid stability. The agreement between the direct force and streaming potential measurements was good both in terms of the magnitude of the potentials and the position of the pzc/iep. By acid washing the fibres the chemical heterogeneity of the surface was reduced and the attractive force profiles at lower pH values were not observed. Instead repulsive forces were observed which were well described by DLVO theory at all separation distances greater than 8 nm. At smaller separation distances an additional repulsive force was measured which was attributed to the presence of a Al(OH)3 like layer on the surface of the alumina. The acid washing treatment also resulted in a shift in the pH at which the pzc/iep occurred to a value of 6.5, presumably due to a lower surface silica concentration.  相似文献   

12.
The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and without (IB03987) antigen I/II through atomic force microscopy (AFM) and to relate these interaction forces with the adhesion of the strains to saliva-coated glass in a parallel plate flow chamber. Upon approach of the bacteria toward a saliva-coated AFM tip, both strains experienced a similar repulsive force that was significantly smaller at pH 6.8 (median 3.0 and 3.1 nN for LT11 and IB03987, respectively) than at pH 5.8 (median 4.6 and 4.7 nN). The decay length of these repulsive forces was between 19 and 37 nm. Upon retraction at pH 6.8, the combined specific and nonspecific adhesion forces were significantly stronger for the parent strain LT11 (median -0.4 nN) than for the mutant strain IB03987 (median 0.0 nN), whereas at pH 5.8 the median of the adhesion forces measured was 0.0 nN for both strains. Moreover, at pH 6.8, the parent strain LT11 adhered in significantly higher numbers (9.6 x 106 cm-2) to a salivary coating than the mutant strain IB03987 (2.5 x 106 cm-2). Similar to the difference in adhesion forces between both strains at pH 5.8, the difference in adhesion between both strains also disappeared at pH 5.8, which suggests the involvement of attractive electrostatic forces in the interaction between antigen I/II and salivary coatings. In summary, this study shows that antigen I/II at the surface of S. mutans LT11 is responsible for its increased adhesion to salivary coatings under flow through an additional attractive electrostatic force.  相似文献   

13.
The effects of a poly(acrylic acid) (PAA)-poly(ethylene) (PEO) comb polymer dispersant on the rheological properties and inter-particle forces in aqueous silica suspensions have been studied under varying pH conditions. The comb polymer was found to adsorb more strongly under acidic than basic conditions, indicating that the PAA backbone of the copolymer preferentially adsorbs onto silica surfaces with the PEO "teeth" extending out from the surface into the solution. In the presence of low concentrations of copolymer, the silica suspensions were stable due to electrostatic repulsions between the silica surfaces. At higher copolymer concentrations and under neutral and basic conditions, where the copolymer interacted only weakly with silica, the suspensions showed a transition from a dispersed to weakly flocculated state and attractive forces were measured between silica surfaces. Under acidic conditions, the silica dispersion also destabilized at intermediate copolymer adsorbed density and then was re-stabilized at higher adsorbed coverage. The silica suspensions were stable at high copolymer coverage due to steric repulsions between the particles. The destabilization at intermediate coverage is thought to be due to polymer bridging between particles or possibly depletion forces.  相似文献   

14.
Contrary to the conventional understanding that atomic clusters usually differ in properties and structure from the bulk constituents of which they are comprised, we show that even a dimer of tungsten oxide (WO(3))(2) possesses bulklike features and the geometry of a small cluster containing only 4 tungsten and 12 oxygen atoms bears the hallmarks of crystalline tungsten oxide, WO(3). This observation, based on a synergistic approach involving mass distributions under quasisteady state conditions, photoelectron spectroscopy, and first principles molecular orbital theory, not only illustrates the existence of a class of strongly covalent or ionic materials whose embryonic forms are tiny clusters but also lends the possibility that a fundamental understanding of complex processes such as catalytic reactions on surfaces may be achieved on an atomic scale with clusters as model systems.  相似文献   

15.
采用现场共聚焦显微喇曼光谱研究钴电极在碱性溶液中的氧化还原行为和生成物的喇曼光谱特征.研究结果表明:电位正向扫描时,在-0.64V左右Co氧化生成Co(OH)2和CoO,随着电位正移逐步生成Co3O4,在正电位区电极表面层主要是Co3O4、CoOOH和CoO2等;电位负向扫描时,电极表面上的高价含氧化合物相继还原为Co3O4和Co(OH)2,并最终还原为Co.由不同电位下的生成物的喇曼光谱可以看出:电极表面上的氧化还原反应是随电位变化而逐步进行的连续化反应过程,并主要形成复合含氧化合物.  相似文献   

16.
We have investigated the formation of tungsten oxide nanowires under different chemical vapor deposition (CVD) conditions. We find that exposure of oxidized tungsten films to hydrogen and methane at 900 degrees C leads to the formation of a dense array of typically 10 nm diameter nanowires. Structural and chemical analysis shows that the wires are crystalline WO3. We propose a chemically driven whisker growth mechanism in which interfacial strain associated with the formation of tungsten carbide stimulates nanowire growth. This might be a general concept, applicable also to other nanowire systems.  相似文献   

17.
We study the interaction between two like charged surfaces embedded in a solution of oppositely charged multivalent rod-like counterions.The counterions consist of two rigidly bonded point charges,each of valency Z.The strength of the electrostatic coupling increases with increasing surface charge density or valency of the charges.The system is analyzed by employing a self-consistent field theory,which treats the short and long range interactions of the counterions within different approximations.We find that in the weak coupling limit,the interactions are only repulsive.In the intermediate coupling regime,the multivalent rod-like counterions can mediate attractive interactions between the surfaces. For sufficiently long rods,bridging contributes to the attractive interaction.In the strong coupling limit,the charge correlations can contribute to the attractive interactions at short separations between the charged surfaces.Two minima can then appear in the force curve between surfaces.  相似文献   

18.
In this paper we investigate the importance of electrostatic double layer forces on the adsorption of human serum albumin by UV-ozone modified polystyrene. Electrostatic forces were measured between oxidized polystyrene surfaces and gold-coated atomic force microscope (AFM) probes in phosphate buffered saline (PBS) solutions. The variation in surface potential with surface oxygen concentration was measured. The observed force characteristics were found to agree with the theory of electrical double layer interaction under the assumption of constant potential. Chemically patterned polystyrene surfaces with adjacent 5 microm x 5 microm polar and non-polar domains have been studied by AFM before and after human serum albumin adsorption. A topographically flat surface is observed before protein adsorption indicating that the patterning process does not physically modify the surface. Friction force imaging clearly reveals the oxidation pattern with the polar domains being characterised by a higher relative friction compared to the non-polar, untreated domains. Far-field force imaging was performed on the patterned surface using the interleave AFM mode to produce two-dimensional plots of the distribution of electrostatic double-layer forces formed when the patterned polystyrene surfaces is immersed in PBS. Imaging of protein layers adsorbed onto the chemically patterned surfaces indicates that the electrostatic double-layer force was a significant driving force in the interaction of protein with the surface.  相似文献   

19.
Transition-metal oxide nanocrystals are interesting candidates for localized surface plasmon resonance hosts because they exhibit fascinating properties arising from the unique character of their outer-d valence electrons. WO(3-δ) nanoparticles are known to have intense visible and near-IR absorption, but the origin of the optical absorption has remained unclear. Here we demonstrate that metallic phases of WO(3-δ) nanoparticles exhibit a strong and tunable localized surface plasmon resonance, which opens up the possibility of rationally designing plasmonic tungsten oxide nanoparticles for light harvesting, bioimaging, and sensing.  相似文献   

20.
Stabilization of oil-in-water emulsion films from PEO-PPO-PEO triblock copolymers is described in terms of interaction surface forces. Results on emulsion films from four Pluronic surfactants, namely F108, F68, P104 and P65 obtained with the Thin Film Pressure Balance Technique are summarized. It is found that film stabilization is due to DLVO (electrostatic) and non-DLVO (steric in origin) repulsive forces. The charging of the oil/water film interfaces is related to preferential adsorption of OH(-) ions. This is confirmed by pH-dependent measurements of the equivalent film thickness (h(w)) at both constant capillary pressure and ionic strength. With reducing pH in the acidic region, a critical value (pH(cr,st)) corresponding to an isoelectric state of the oil/water film surfaces is found where the electrostatic interaction in the films is eliminated. At pH≤pH(cr,st), the emulsion films are stabilized only by steric forces due to interaction between the polymer adsorption layers. Disjoining pressure (Π) isotherms measured for emulsion films from all the four Pluronic surfactants used at pH相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号