首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》1999,18(6):811-815
Oxidative addition of H–R (H--Ph and H2) to trans-Ir(--Ph)(CO)(PPh3)2 (2) gives the initial products, cis, cis-Ir(H)(--Ph)2(CO)(PPh3)2 (3a) and cis, cis-Ir(H)2(--Ph)(CO)(PPh3)2 (3b), respectively. Both cis-bis(PPh3) complexes, 3a and 3b undergo isomerization to give the trans-bis(PPh3) complexes, trans, trans-Ir(H)(--Ph)2(CO)(PPh3)2 (4a) and cis, trans-Ir(H)2(--Ph)(CO)(PPh3)2 (4b). The isomerization, 3b4b is first order with respect to 3b with k1=6.37×10−4 s−1 at 25°C under N2 in CDCl3. The reaction rate (k1) seems independent of the concentration of H2. A large negative entropy of activation (ΔS=−24.9±5.7 cal deg−1 mol−1) and a relatively small enthalpy of activation (ΔH=14.5±3.3 kcal mol−1) were obtained in the temperature range 15∼35°C for the isomerization, 3b4b under 1 atm of H2.  相似文献   

2.
Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.  相似文献   

3.
Addition of the ·P(O)(OPri)2, Me·, Et·, ·But, and Cl3C· radicals to the (ν2-C60)Os(CO)-(PPh3)2(CNBut) complex (1) was studied by ESR spectroscopy. The spectral parameters of the spin-adducts of these radicals with complex 1 were determined. The predominant direction of the attack by the ·P(O)(OPri)2, ·But, and Cl3C· radicals are the cis-1 and cis-2 bonds of the fullerene molecule. The stability of the spin-adducts depends substantially on the nature of the added radical. The addition rate constants of the ·P(O)(OPri)2, ·But, and Cl3C· radicals to complex 1 and the dimerization rate constants for these spin-adducts were determined. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 301–307, February, 2008.  相似文献   

4.
Two new mixed metal cluster complexes PtRu3(CO)10(PPh3)(3-S)2,3 14% yield and PtRu3(CO)9(PPh3)2(3-S)2,4 23% yield were obtained from the reaction of Ru3(CO)9(3-S)2,1 with Pt(PPh3)2(C2H4) at 0°C. The cluster of4 consists of a spiked triangle of four metal atoms with two triply bridging sulfido ligands. The reaction of Ru4(CO)11(4-S)2,2 with Pt(PPh3)2(C2H4) yielded the expanded mixed-metal cluster complex PtRu4(CO)12(PPh3)(4-S)2,5 in 12% yield. The structure of the cluster5 can be described as a pentagonal bipyramid of five metal atoms and two sulfido ligands with one metal-metal bond missing. Compounds4 and5 were characterized by a single-crystal X-ray diffraction analyses.  相似文献   

5.
The trinuclear osmium carbonyl cluster, [Os3(CO)10(MeCN)2], is allowed to react with 1 equiv. of [IrCp1Cl2]2 (Cp1 = pentamethylcyclopentadiene) in refluxing dichloromethane to give two new osmium–iridium mixed-metal clusters, [Os3Ir2(Cp1)2(μ-OH)(μ-CO)2(CO)8Cl] (1) and [Os3IrCp1(μ-OH)(CO)10Cl] (2), in moderate yields. In the presence of a pyridyl ligand, [C5H3N(NH2)Br], however, the products isolated are different. Two osmium–iridium clusters with different coordination modes of the pyridyl ligand are afforded, [Os3IrCp1(μ-H)(μ-Cl)(η33-C5H2N(NH2)Br)(CO)9] (3) and [Os3IrCp1(μ-Cl)223-C5H3N(NH)Br)(CO)7] (4). All of the new compounds are characterized by conventional spectroscopic methods, and their structures are determined by single-crystal X-ray diffraction analysis.  相似文献   

6.
The compound [RuCl2(CO)(DMA)(PPh3)2] [DMA = dimethylacetamide] was obtained from [RuCl3(PPh3)2-(DMA)] · DMA and CO in DMA. Orange crystals of [RuCl2(CO)(DMA)(PPh3)2] · 1/2CH2Cl2 were isolated by slow evaporation of a CH2Cl2/DMA solution and its structure was determined by single crystal X-ray diffraction. The analogous compounds containing DMF and DMSO were obtained from the precursor ttt-[RuCl2(CO)2(PPh3)2]. Characterization of the other complexes is based on i.r. and n.m.r. spectroscopy, including 31P{1H} data.  相似文献   

7.
The reaction of (μ-H)Os3μ-O2CC5H4Mn(CO)3(CO)10 with PPh3 in the presence of Me3NO gave mono- and disubstituted heterometallic complexes (μ-H)Os3μ-O2CC5H4Mn(CO)3(PPh3)(CO)9 and (μ-H)Os3μ-O2CC5H4Mn(CO)3 (PPh3)2(CO)8. Crystal structure determination was performed for three isomeric cluster complexes (μ-H)Os3μ-O2CC5H4Mn(CO)3(PPh3)2(CO)8, which are both geometrical and conformational isomers differing in color. The geometrical isomerism is due to the attachment of the PPh3 group at different vertices of the Os3 triangle relative to the O2CC5H4Mn(CO)3 bridging ligand. The conform ational isomerism implies that the molecules have the same arrangement of ligands and differ only in the values of bond angles between the planar fragments of the clusters.  相似文献   

8.
The reactions between trans-[OsVIO2Cl2L2] (L = PPh3, AsPh3, SbPh3) and carboxylic acids RCO2H (R = CH3, C(CH3)3, CH2Cl, CCl3, CF3) are studied. The resulting binuclear compounds were found to have the general formula [Os2 IV(-O)(-O2CR)2Cl4(L)2] (L = PPh3; R = CH3, C(CH3)3, CH2Cl, CCl3, CF3, and L = AsPh3; R = CH3, CH2Cl, CCl3, CF3). X-ray diffraction analysis revealed that the [Os2 IV(-O)(-O2CCCl3)2Cl4(PPh3)2] · CH2Cl2 complex crystallizes in a triclinic system with space group P ; a = 10.747(2) Å, b = 19.291(4) Å, c = 24.614(5) Å, = 100.08(3)°, = 90.63(3)°, = 97.05(3)°, V = 4983.5(17) Å3, Z = 4. The Os(-O)Os angle is 142.2(7)°. The interaction of trans-[OsVIO2Cl2(SbPh3)2] with all the acids under study is attended by intramolecular redox reaction resulting in SbCl2Ph3.  相似文献   

9.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

10.
《Polyhedron》2003,22(25-26):3293-3298
The complex [Rh(Tp*)(PPh3)2] reacts with dichloromethane to give [Rh(Cl)(H)2(PPh3)2(pz*)] (1) and [Rh(Cl)2(H)(PPh3)2(pz*)] (2), with C6F5SH to give [(PPh3)2Rh(μ-SC6F5)2Rh(SC6F5)(H)(PPh3)(pz*)] (3) and with HgCl2 to give [{Rh(Cl)2(PPh3)2}2Hg] (4), all under mild conditions. The crystal structures show that 2 has a slightly distorted octahedral geometry, 3 has approximately square planar Rh(I) and octahedral Rh(III) geometries, with an angle of 160.7° between the two RhS2 planes and 4 has rhodium with a square pyramidal geometry where mercury occupies a position at the apex of the pyramid; the Rh–Hg–Rh geometry is linear and, with respect to the Rh–Hg–Rh axis, the ligands (Cl, PPh3) on one rhodium are offset by approximately 42° relative to their counterparts on the second rhodium. In 2 an intramolecular hydrogen bond exists between the pyrazole NH and one of the chloride ligands. Structure 4 is unusual in that it contains an unsupported mercury bridge.  相似文献   

11.
12.
13.
14.
Reaction of the activated cluster [Os3(CO)11(CNMe)] with primary arsine AsH3 forms the arsinidine compound [H2Os33-AsH)(CO)11] (1a, 1b), which on further reaction with [Os3(CO)11(NCMe)] yields [(CO)11Os3As(Os3(CO)9H3)] (2) and with [H2Os3(CO)10] yields [H2Os3(CO)9As(Os3(CO)9H2)] (3). Similarly [H2Os3(CO)10] reacts with AsH3 at room temperature to afford 3 in good yields. Thermal degradation and rearrangement of 2 gives the pentanuclear cluster [H2Os5(CO)17AsH] (4).  相似文献   

15.
The stability of the complex (μ-H)Os3(μ-OCNMe2)(CO)9PPh2CH2CH=CH2 (1), which contains a free unsaturated functional group in the terminal ligand PPh2CH2CH=CH2, with respect to isomerization, chelation of the ligand, and other transformations in solutions was examined. No transformations of complex1 were observed in the course of synthesis from (μ-H)Os3(μ-OCNMe2)(CO)9NMe3 or upon heating in solution. Complex1 as well as complexes (μ-H)Os3(μ-OCNMe2)(CO)9PHPh2 and (μ-H)Os3(μ-OCNMe2)(CO)9PPh3, which were formed as admixtures, were isolated in the solid state and identified by1H,1H-{31P}, and1H-{1H} NMR, IR, and Raman spectroscopy and mass spectrometry. For Part 52, see Ref. 1. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1455–1460, August, 2000.  相似文献   

16.
《Polyhedron》2002,21(18):1817-1823
The oxidative addition reaction of SnCl4 with [W(CO)4(NCMe)(PPh3)] in acetonitrile gives a mixture of seven-coordinate tungsten(II) compounds: [WCl(SnCl3)(CO)3(NCMe)(PPh3)] (1), [WCl2(CO)3(NCMe)(PPh3)] (2), [WCl(SnCl3)(CO)2(NCMe)2(PPh3)] (3), and [WCl2(CO)2(NCMe)2(PPh3)] (4) identified by IR and NMR (1H, 13C{1H}, and 31P{1H}) studies. Treatment of [W(CO)4(NCMe)(PPh3)] with 1 equiv. of SnCl4 in CH2Cl2 solution besides compounds 1 and 2 also gives ionic species such as [HPPh3]+ and [SnCl6]2− and cationic tungsten(II) complexes. The crystal structure of one of these, [WH(CO)3(NCMe)(PPh3)2][SnCl5·MeOH] (5), has been established by single-crystal X-ray diffraction. The IR, 1H, 13C{1H} and 31P{1H} spectra of 5 are also described and can be correlated with the crystallographically observed geometry. A notable feature of 5 is the presence of an agostic interaction of the hydride ligand with one of the carbonyl ligands.  相似文献   

17.
The oxidative addition of 1-bromopropane to trans-[RhBr(CO){P(p-EtC6H4)3}2] has been found to follow pseudo first-order kinetics and give only an acylrhodium(III) product. The reaction is not catalysed by added bromide ion in chloroform solution, indicating that an anionic intermediate such as [RhBr2(CO){P(p-EtC6H4)3}] does not play an important part in this reaction. The oxidative addition of iodomethane to trans-[Rh(μ-X)(CO)(PPh3)]2 (X  Cl and I) is pseudo first-order, the reactivity increasing on replacing chloride by iodide.  相似文献   

18.
The reactions of the heterometallic complexes (-H)Os3(-O2CC5H4FeCp)(CO)10 (1) and Fe{(-O2CC5H4)(-H)Os3(CO)10}2 (2) with CF3COOH, CF3SO3H, and AcCl were studied. The reaction of 1 with CF3COOH involves interaction with the Cp ligands, protonation of the O atom of the bridging carboxylate group, and oxidative degradation of the complex. At low concentrations, CF3SO3H protonates the O atom of the bridging carboxylate group, while at high concentrations, degradation of the complex takes place. The reaction of complex 2with either CF3COOH or low concentrations of CF3SO3H results in successive elimination of two [(-H)Os3(CO)10] cluster fragments due to protonation of the O atoms of the carboxylate groups. In the case of high CF3SO3H concentrations, the Os—Os bonds of both cluster fragments of 2 are also protonated to give the [Fe{(-O2CC5H4)(-H)2Os3(CO)10}2]2+ dication. The Friedel—Crafts acylation of 1 takes place only when a large excess of AcCl and AlCl3 is used to give two new complexes, (-H)Os3(-O2CC5H4FeC5H4C(O)CH3)(CO)10 and (-H)Os3(-O2CC5H3C(O)CH3FeCp)(CO)10 in a 2 : 1 ratio.  相似文献   

19.
RuHCl(PPh3)3 reacts quantitatively with cycloheptatriene in CH2Cl2 at 35°C in 15 min to give Ru(η5-C7H9)Cl(PPh3)2 and PPh3. The major isomer adopts a conformation with inequivalent phosphorus ligands and no plane of symmetry through the C7H9 ligand, but rapid intramolecular scrambling with δG3 = 10.6 kcal mol−1 results in an averaged 1H, 13C, and 31P NMR spectrum at room temperature. RuHCl(PPh3)3 reacts with cyclohepta-1,3-diene to give initially Ru(η3-C7H11)Cl(PPh3)2, but in a subsequent reaction this is dehydrogenated to give Ru(η5-C7H9)Cl(PPh3)2.  相似文献   

20.
The structural characterization of the osmahexaborane 2-carbonyl-2,2-bis­(tri­phenyl­phosphine)-nido-2-osmahexaborane(9), [Os(B5H9)(C18H15P)2(CO)], (I), a metallaborane analogue of B6H10, confirms the structure proposed from NMR spectroscopy. The structure of the osmadecaborane 6-carbonyl-6,6-bis­(tri­phenyl­phosphine)-nido-6-osmadecaborane(13), [Os(B9H13)(C18H15P)2(CO)], (IV), is similarly confirmed. The short basal B—B distance of 1.652 (8) Å in (I), not bridged by an H atom, mirrors that in the parent hexaborane(10) [1.626 (4) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号