首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The title complexes were tested in the hydrogenation of hex-3-yne and of 1,3- and 1,4-cyclohexadiene (CHD) under solid–gas conditions. The clusters were deposited on three “standard” supports, that is, pyrex glass, alumina, and silica. All the clusters, particularly (μ-H)Ru3(CO)10(PPh2), show hydrogenation activity. However, they are not particularly selective toward the formation of monoenes; “disproportionation” of 1,3- and 1,4-CHD to hydrogenated products and benzene also occurs. The hydrogenation activity of the clusters is dependent on their nature, the type of substrate, and the characteristics of the supporting material; silica and pyrex glass are usually more active than alumina. Attempts at detecting the formation of organometallic intermediates or by-products (through IR spectroscopy) were made. HRTEM was used to check for eventual decomposition on some supports.  相似文献   

2.
Thecloso octahedral cluster Ru4(CO)114-PPh)(μ4-S)1 and selenium and tellurium analogues, the first examples of unsaturated ruthenium clusters with a planar metal core and different main group 15 and 16 atoms have been synthesized fromnido Ru4(CO)133-PPh). An X-ray analysis of1 and Ru4(CO)104-PPh)(μ4-Se)(PEt3)2a has confirmed thetrans disposition of phosphorus and group 16 main group fragments.  相似文献   

3.
Two hexaruthenium carbonyl clusters [Ru6(CO)15(μ-CO)2(μ4-NH) (μ-OMe){μ3-η2-N(H)C(O)OMe}] and [Ru6(CO)16(μ-CO)2-(μ4-NH)(μ-OMe)(μ-NCO)]2 have been isolated from the pyrolysis of H2Ru3(CO))9NOCH3, and single-crystal X-ray structure analysis shows that both 1 and 2 have a square planar arrangement of four ruthenium atoms capped by a μ4-nitrene ligand, with two additional ruthenium atoms bridging two opposite RuRu edges of the square base to form a ‘boat’ form metal framework.  相似文献   

4.
The purple, phosphinidene-capped, phosphido-bridged triruthenium cluster [Ru33-PPh)(μ2-PPh2)2(CO)7] reacts readily with carbon monoxide, trimethylphosphite, sodium borohydride and diphenylacetylene under mild conditions to afford product mixtures from which [Ru3(μ-PPh)(μ2-PPh2)2(CO)7+n] (n = 1, 2 or 3), [Ru33-PPh)(μ2-PPh2)2(CO)6{P(OMe)3}], [Ru333-PhPCPhCPh)(μ2-PPh2)2(CO)6], respectively, can be isolated. The structure of [Ru33-PPh)(μ2-PPh2)2(CO)6{P(OMe)3}] has been established X-ray crystallographically.  相似文献   

5.
Addition of aqueous HCl to Ru5( 3-C=CH2)(-SMe)2(-PPh2)2(CO)10 afforded the structurally characterized carbyne complex Ru5( 3-SMe)( 3-CMe)(-Cl)(-SMe)(-PPh2)2(CO)9, formed by addition of H to the vinylidene ligand; a Cl atom bridges an Ru–Ru bond.  相似文献   

6.
The complexes Pt(nb)3-n(P-iPr3)n (n=1, 2, nb=bicyclo[2.2.1]hept-2-ene), prepared in situ from Pt(nb)3, are useful reagents for addition of Pt(P-iPr3)n fragments to saturated triruthenium clusters. The complexes Ru3Pt(CO)11(P-iPr3)2 (1), Ru3Pt(-H)(3-3-MeCCHCMe)(CO)9(P-iPr3) (2), Ru3Pt(3-2-PhCCPh)(CO)10(P-iPr3) (3), Ru3Pt(-H)(4-N)(CO)10(P-iPr3) (4) and Ru3Pt(-H)(4-2-NO)(CO)10(P-iPr3) (5) have been prepared in this fashion. All complexes have been characterized spectroscopically and by single crystal X-ray determinations. Clusters 1–3 all have 60 cluster valence electrons (CVE) but exhibit differing metal skeletal geometries. Cluster 1 exhibits a planar-rhomboidal metal skeleton with 5 metal–metal bonds and with minor disorder in the metal atoms. Cluster 2 has a distorted tetrahedral metal arrangement, while cluster 3 has a butterfly framework (butterfly angle=118.93(2)°). Clusters 4 and 5 posseses 62 CVE and spiked triangular metal frameworks. Cluster 4 contains a 4-nitrido ligand, while cluster 5 has a highly unusual 4-2-nitrosyl ligand with a very long nitrosyl N–O distance of 1.366(5) Å.  相似文献   

7.
The compound [Ru4(μ-Se)2(CO)8(μ3-CO)3] (1), has been obtained in good yield by vacuum pyrolysis of [RU3(CO)12] with [Ph2Se2] at 185°C. Reaction of 1 with 1,3-bis(diphenylphosphino)propane at room temperature affords the novel cluster [RU33-Se)2(CO)7(Ph2P(CH2)3PPh2)] (2). The structures of 1 and 2 have been determined by an X-ray diffraction study.  相似文献   

8.
Deprotonation of Ir4(CO)11PPh2H (1) in the presence of [AuPPh3][PF6] yields the novel species Ir4(CO)11(PPh2AuPPh3) (2), which possesses a tetrahedral framework bearing a terminally bound PPh2AuPPh3 ligand. When heated in toluene, 2 is converted into the phosphido species Ir4(CO)10(μ-PPh2)(μ-AuPPh3).  相似文献   

9.
Treatment of carbido cluster Ru5(μ 5-C)(CO)15 with Me3NO in acetonitrile solution followed by addition of dimethyl maleate or dimethyl acetylene dicarboxylate affords new clusters Ru5(μ 5-C)(CO)13[C2H2(CO2Me)2] (1) and Ru5(μ 5-C)(CO)15[C2(CO2Me)2] (2), respectively. Single crystal X-ray structural studies reveal that both complexes contain a wingtip-bridged butterfly pentametallic skeleton. In complex1 the maleate fragment is coordinated to one wingtip Ru atom through its carbon-carbon double bond and to the adjacent Ru atom by the formation of two O → Ru dative bonding interactions, while the acetylene dicarboxylate fragment in2 is best considered as acis-dimetallated alkene, linking one hinge Ru atom and the nearby Ru atom at the bridged position. Crystal data for1: space group P 42/n;a=20.199(6),c=13.941(3) Å,Z=8; finalR F=0.025,R w=0.026 for 3963 reflections withI>2σ(I). Crystal data for2: space group P21/n;a=9.634(3),b=20.062(6),c=17.372(5) Å,β=90.62(2)°,Z=4; finalR F=0 033,R w=0.036 for 4683 reflections withI>3σ(I).  相似文献   

10.
The reaction of [Ru3(CO)12] with Ph2(pyth)PSe (pyth=5-(2-pyridyl)-2-thienyl) allows to obtain two novel clusters [Ru3(3-Se)2(CO)7{P(pyth)Ph2}2] 1 and [Ru3(3-Se)(-PPh2)(-pyth)(CO)6{P(pyth)Ph2}] 2 in satisfactory yields. The first one exhibits the well-known bicapped, open triangular, 50-electron nido-core, whereas 2, whose crystal structure has been determined, shows the rather rare Ru3Se tetrahedron with the Ph2P and pyth fragments as side-bridging ligands. Morever cluster 2 belongs to the exiguous family of selenido-phosphido clusters not easily achievable by other routes.  相似文献   

11.
The tetranuclear ruthenium cluster [Ru4(CO)10Cl2(OEt)2] has been prepared in low yield by the reaction of [Ru3(CO)12] with [N(PPh3)2]Cl in refluxing EtOH, followed by oxidation with either [NO][BF4] or Ag[ClO4]. A single-crystal X-ray analysis of the complex shows that the four metal atoms adopt a planar geometry with one ruthenium bonded by two μ2-Cl ligands and two μ3-OEt ligands to a trinuclear fragment. This complex crystallises in the monoclinic space group I2/c, with a 14.458(3), b 22.073(6), c 15.302(4) Å, β 99.54(2)°, Z = 8; 3113 observed data with F > 3σ(F) were refined by blocked full-matrix least squares to R = 0.031, Rw = 0.034.  相似文献   

12.
A new synthesis of Mo2(CO)8(-PPh2)2 and W2(CO)8(-PPh2)2 by the reaction of molybdenum and tungsten hexacarbonyls with a tetraazamacrocyclic ligand containing —CH2PPh2 side chains, comprising cleavage of the phosphorus-methylene bond has been performed. The complexes have been investigated by magnetic and spectroscopic measurements and by single-crystal structure analyses. The structural characterization of a new polymorph of Mo2(CO)8(-PPh2)2 has been described.  相似文献   

13.
The reaction between Ru3(3-2-PhC2C=CPh)(-dppm)(CO)8 and Co2(CO)8 afforded dark red Co2Ru3(4-C2Ph)(3-C2Ph)(-dppm)(-CO)2(CO)9, shown by an X-ray structure determination to contain a strongly twisted Co2Ru3 bow-tie cluster (central Co), to which two PhC2 units derived from cleavage of the original diyne are attached. One a these is strongly interacting with four metal atoms, the other being attached in the familiar 1,22-mode. The dppm ligand remains bridging two of the Ru atoms.  相似文献   

14.
金属簇合物具有独特的结构和成键方式。本文对铑簇合物的简正振动分析进行了研究。通过红外光谱用石蜡油糊涂KBr和聚乙烯窗口, 在Nicolet 200SXV FT-IR光谱上测定了Rh2(CO)4(μ-Cl)2的构型, 并使用分子振动全分析程序MVTA(Basic语言), 在PC机上进行计算。  相似文献   

15.
Redox condensation of [Ru3H(CO)11]- with Ni(CO)4, in tetrahydrofuran solution, under a nitrogen atmosphere, yields the tetranuclear anion [NiRuH(CO)11)-. Subsequent deprotonation with Bu'OK in acetonitrile solution leads to the formation of the related dianion. Both anions have been characterized by spectroscopic techniques, elemental analysis and single crystal X-ray diffraction. [PPh4][NiRu3H(CO)12] crystallizes in the triclinic space group PI with unit cell dimensionsof a = 11.842(2) Å,b = 12.335(3) Å, c = 13.3080) Å,a = 91.89(2)°, = 93.35(1)°,y = 96.41(2)°, Z = 2, V= 1926.9(7) Å'. The NiRu3, metal core of the molecule defines a distorted tetrahedron with nine terminal and three edge bridging carbonyl groups. The hydrido ligand was located by difference Fourier techniques and was found to bridge the NiRu2 basal triangle at a distance of 0.88(6) A from this plane. Selected average distances and angles are: Ru-Ru = 2.839 Å, Ru-Ni = 2.640 Å, Ru-C, = 1.910 A,Ru-C b = 2.084 Å, Ni-C b = 2.022 Å, Ru-H = 1.77 Å, C-0, = 1.135 Å, C-O b = 1.159 Å, M-C-O, = 176.3°,M-C--O b = 139.3°;other distances are: Ni-C1 = l.758(7) Å, Ni-H= 1.85(7) Å. [NEt4]2[NiRu3(CO)12] crystallizes in the orthorhombic space group Pnma (no. 62) with unit cell dimensions ofa=20.247(5) Å,b = 15.038(4)Å,c = 12.079(3) Å, Z=4, V=3678(2) A'. The molecule contains a tetrahedral NiRu3 core with eight terminal and four edge bridging carbon monoxide groups which bridge the three Ni-Ru and one Ru-Ru bond. Average distances and angles are: Ru -Ru =2.3050A Ru-Ni 2.648 Å, Ru-C t = 1.878 Å, Ru-C b 2.045 Å, Ni-C b = 2.055 Å, C-O t = 1.145 Å, C-01,=1.157 Å, M-C-O,= 176.9°, M-C-O b = 138.6°; other distance is: Ni-C t = 1.754(10) Å,t = terminal,b = bridging.  相似文献   

16.
The reaction of μ-alkyne-bridged dimolybdenum compound [Mo2(μ-C2HPh)(CO)4(η5-C5H4C(O)Me)2] 1 with Co2(CO)8 in refluxing toluene gave a new butterfly compound [Co2Mo2(μ4-C2HPh)(μ-CO)4(CO)4(η5-C5H4C(O)Me)2] 2 which was fully characterized by elemental analysis, IR, 1H NMR and X-ray single crystal diffraction techniques. 2 crystallized in monoclinic system, C30H20Co2Mo2O10, Mr=850.23, space group P21/a(#14), a=14.165(5), b=12.498(2), c=16.204(2)(A), β = 96.50(2)°, V = 2850(1)(A)3, Z = 4, Dc = 1.981 g cm-3, F(000)=1672, μ(MoKα)=20.41 cm-1, final R=0.030, Rw=0.039 for 4831 observable reflections with I>2σ(I). The structure contains a Co2Mo2 butterfly core, and each Mo-Co bond is spanned by an asymmetric semi-bridging carbonyl ligand.  相似文献   

17.
Abstract

[Cp2Fe2(CO)2(μ-CO)(μ-CHP(OPh)3)+][BF? 4] crystallizes in the centrosymmetric monoclinic space group P21/n with a = 12.553(7) Å, b = 16.572(11) Å, c = 15.112(8) Å, β = 100.00(4)°, V = 3096(3) Å3 and D(calcd.) = 1.579 g/cm3 for Z = 4. The structure was refined to R(F) = 5.83% for 1972 reflections above 4σ(F). The cation contains two CpFe(CO) fragments linked via an iron—iron bond (Fe(1)—Fe(2) = 2.544(3)Å), a bridging carbonyl ligand (Fe(1)—C(4) = 1.918(1) Å, Fe(2)—C(4) = 1.946(12)Å) and a bridging CHP(OPh)3 ligand (Fe(1)—C(1) = 1.980(9)Å, Fe(2)—C(1) = 1.989(8)Å). Distances within the μ-CHP(OPh)3 moiety include a rather short carbon—phosphorus bond [C(1)—P(1) = 1.680(10)Å] and P—O bond lengths of 1.550(7)–1.579(6)Å. The crystal is stabilized by a network of F…H—C interactions involving the BF? 4 anion.

[Cp2Fe2(CO)2(μ-CO)(μ-CHPPh3)+][BF? 4], which differs from the previous compound only in having a μ-CHPPh3 (rather than μ-CHP(OPh)3) ligand, crystallizes in the centrosymmetric monoclinic space group P21/c with a = 11.248(5)Å, b = 13.855(5)Å, c = 18.920(7)Å, β = 96.25(3)°, V = 2931(2)Å3 and D(calcd.) = 1.559 g/cm3 for Z = 4. This structure was refined to R(F) = 4.66% for 1985 reflections above 4σ(F). Bond lengths within the dinuclear cation here include Fe(1)-Fe(2) = 2.529(2)Å, Fe(1)—C(3) = 1.904(9) Å and Fe(2)—C(3) = 1.911(8) Å (for the bridging CO ligand) and Fe(1)—C(1P) = 1.995(6) Å and Fe(2)—C(1P) = 1.981(7) Å (for the bridging CHPPh3 ligand). Distances within the μ-CHPPh3 ligand include a longer carbon—phosphorus bond [C(1P)—P(1) = 1.768(6)Å] and P(1)—C(phenyl) = 1.797(7)–1.815(8) Å.  相似文献   

18.
The reaction between Ru5(5-C2PPh2)(-PPh2)(CO)13 and Au(C2Ph)(PPh3) afforded AuRu5(5-C2PPh2)(-C2Ph)(-PPh2)(CO)13 (PPh3), in which the Ru5 cluster has a scorpion geometry; the Au(PPh3) group bridges one of the Ru-Ru bonds of the Ru3 triangle, while the C2Ph group bridges one of the tail Ru-Ru vectors.For Part 84, see Ref. 1.  相似文献   

19.
Reaction of [Ru3(CO)12] with a two molar proportion of (RO)2PN(Et)P(OR)2 (R = Me or Pri) in benzene under reflux affords a number of products including [Ru3(CO)10{μ-(RO)2PN(Et)P(OR)2}], [Ru3(CO)9{μ-(RO)2PN(Et)P(OR)2}{η1-(RO)2PN(Et)P(OR)2}] and, as the major species, the tetranuclear derivative [Ru432-CO)(CO)9{μ-(RO)2PN(Et)P(OR)2}2]. An X-ray diffraction study of [Ru432-CO)(CO)9{μ-(MeO)2PN(Et)P(OMe)2}2] has revealed that the skeletal framework adopts a butterfly structure and that one of the carbonyl groups functions as a triply bridging four-electron donor ligand capping the two wing-tip and one of the hinge ruthenium atoms.  相似文献   

20.
The reactions of [Ru3(μ-H)(μ-ampy)(CO)9] (1) (Hampy = 2-amino-6-methylpyridine) with one or two equivalents of PPh2H lead to the complexes [Ru3(μ-H)(μ3-ampy)(CO)8(PPh2H)] (2) or [Ru3(μ-H)(μ3-ampy)(CO)7(PPh2H)2] (3), in which the PPh2H ligands are cis to the bridging NH fragment and cis to the hydride. Complex 2 can be transformed in refluxing THF into the phosphido-bridged derivative [Ru33-ampy)(μ-PPh2)(μ-CO)2(CO)6] (4), which contains the PPh2 ligand spanning one of the two RuRu edges unbridged by the amido moiety, and presents an extremely high 31P chemical shift of 386.9 ppm. Under similar conditions, complex 3 gives a mixture of two isomers of [Ru3(μ-H)(μ3-ampy)(μ-PPh2)2(CO)6] in a 5:1 ratio; the major product (5) has a plane of symmetry, whereas the minor one (6) is asymmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号