首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are a great variety of optical nonlinearities that can lead to the phenomenon of laser-induced gratings (LIG) in semiconductors. In the present contribution the dynamic behaviour of an induced absorber with intrinsic bistability is investigated under excitation in a LIG self-diffraction arrangement. Using CdS as a model substance, the comparison of our theoretical model with our experimental findings gives an insight into the nonlinear dynamics of the degenerate carrier system and also an estimation of the transport properties of the electron-hole plasma.  相似文献   

2.
The H2 optimum parameters of a dynamic vibration absorber of non-traditional form are derived to minimize the total vibration energy or the mean square motion of a single degree-of-freedom (sdof) system under random force excitations. The reduction of the mean square motion of the primary structure using the traditional vibration absorber is compared with the proposed dynamic absorber. Under optimum tuning condition, it is shown that the proposed absorber when compared with the traditional absorber, provides a larger suppression of the mean square vibrational motion of the primary system.  相似文献   

3.
A recently reported design of a hybrid vibration absorber (HVA) which is optimized to suppress resonant vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of the SDOF system under stationary random force excitation. The proposed HVA makes use of the feedback signals from the displacement and velocity of the absorber mass for minimizing the vibration response of the dynamic structure based on the H2 optimization criterion. The objective of the optimal design is to minimize the mean square vibration amplitude of a dynamic structure under a wideband excitation, i.e., the total area under the vibration response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide significant vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the primary system. The proposed HVA are tested on a SDOF system and continuous vibrating structures with comparisons to the traditional passive vibration absorber.  相似文献   

4.
The aim of this paper is to determine whether one dynamic absorber can reduce the amplitude of the steady state vibration of a parametric system for natural and parametric resonance frequencies simultaneously. The efficiency of both the conventional dynamic absorber and the parametric absorber is analyzed. The first order sensitivity analysis of parametric periodic systems in the time domain is applied to obtain logarithmic sensitivity functions in the frequency domain. The first order sensitivity logarithmic functions are used to tune the conventional absorber and the parametric absorber.  相似文献   

5.
The attenuation of the transverse vibration of a plate, subjected to a harmonic force, is studied. This goal can be achieved by using an active dynamic absorber. The active absorber is made of a pair of piezoelectric sheets, attached to both sides of the plate, and closed electric circuits. One piece of the piezoelectric material provides a sensor for detecting the motion of the plate. Another piece serves as an active dynamic absorber. The equations of motion of the composite plate, including the plate and the piezoelectric material, and the circuit equations of the sensor and the absorber are derived. The displacements of the plate and the currents in the circuits are calculated. The active absorber can successfully attenuate the vibration. The numerical results show that the proposed active absorber can offer more reduction than that using a passive absorber while the absorber is designed to suppress the resonance of a particular vibration mode. Moreover, the active absorber can also reduce the displacements corresponding to other uncontrolled modes. The effects of altering various parameters of the active absorber are studied and discussed.  相似文献   

6.
R. Lane 《Ultrasonics》1981,19(1):28-30
The effect of replacing the viscoelastic, polymer, base layer by a metal base on the anechoic performance of an Alberich, underwater, sound absorber is reported. It is seen that anechoic performance can be retained using the metal base and it is concluded that the anechoic behaviour is primarily due to the dynamic behaviour of the cover layer.  相似文献   

7.
Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the attenuation of torsional vibrations in rotating and reciprocating machines. They consist of masses that are constrained to move along specific paths relative to the rotational axis of the machine. Previous analytical studies have considered the performance of single absorber systems with general paths and of multi-absorber systems with a specific path type. In this paper, we investigate the performance and dynamic stability of systems comprised of multiple, identical centrifugal pendulum vibration absorbers riding on quite general paths. The study is carried out by considering a scaling of the system parameters, based on physically realistic ranges of dimensionless parameters, which permits application of the method of averaging. It is found that the performance of these systems is limited by two distinct types of instabilities. In one type, the system of absorbers lose their synchronous character, while in the other a classical non-linear jump affects all absorbers identically, leading to highly undesirable system behavior. These results are used to evaluate two common types of absorber paths, namely circles and cycloids, including intentional mistuning of the absorber frequencies. The results are used to make some recommendations about the selection of paths to achieve design goals in terms of absorber performance and operating range. The analytical predictions are confirmed by numerical simulations.  相似文献   

8.
The H optimum parameters of a dynamic vibration absorber (DVA) with ground-support are derived to minimize the resonant vibration amplitude of a single degree-of-freedom (sdof) system under harmonic force excitation. The optimum parameters which are derived based on the classical fixed-points theory and reported in literature for this non-traditional DVA are shown to be not leading to the minimum resonant vibration amplitude of the controlled mass. A new procedure is proposed for the H optimization of such a dynamic vibration absorber. A new set of optimum tuning frequency and damping of the absorber is derived, thereby resulting in lower maximum amplitude responses than those reported in the literature. The proposed optimized variant DVA is also compared to a ground-hooked damper of the same damping capacity of the damper in the DVA. It is proved that the proposed optimized DVA has better suppression of the resonant vibration amplitude of the controlled system than both the traditional DVA and also the ground-hooked damper if the proposed design procedure of the variant DVA is followed.  相似文献   

9.
The paper proposes an amplitude reduction method for parametric resonance with a new type of dynamic vibration absorber utilizing quadratic nonlinear coupling. A main system with asymmetric nonlinear restoring force and harmonic excitation causes parametric resonance in the system. In contrast with autoparametric vibration absorber, the natural frequency of the vibration absorber is tuned to be in the neighborhood of twice that of the main system. For such a vibration absorber, we investigate the effect on the amplitude reduction for a parametrically excited main system. Analytical results using the method of multiple scales show that the amplitude of parametric resonance is reduced by the effect of the vibration absorber. The experimental results by a simple apparatus indicate that the parametric resonance is stabilized by the effects of both vibration absorber and Coulomb friction of the main system. Moreover, numerical results considering the Coulomb friction of the main system show that the amplitude of parametric resonance becomes close to zero by the proposed vibration absorber.  相似文献   

10.
A new kind of coupling-type silicone rubber shock absorber was prepared. Vibration and static stiffness tests were carried out to investigate the characteristics of vibration control. A mechanical model of the shock absorber was established, and the working principle of the shock absorber was studied by comparing the vibration test with simulation results. The dynamic results show the shock absorber has excellent vibration control performance. The coupling characteristics originate from the contact of inner and outer silicone rubber. It is shown that the stiffness and damping coefficients in the coupling process are critical for vibration control of the shock absorber.  相似文献   

11.
The present paper is devoted to analyzing undamped forced transverse vibrations of an elastically connected complex double-beam system. The problem is formulated and solved in the case of simply supported beams. The classical modal expansion method is applied to ascertain dynamic responses of beams due to arbitrarily distributed continuous loads. Several cases of particularly interesting excitation loadings are investigated. The action of stationary harmonic loads and moving forces is considered. In discussing vibrations caused by exciting harmonic forces, conditions of resonance and dynamic vibration absorption are determined. The beam-type dynamic absorber is a new concept of a continuous dynamic vibration absorber (CDVA), which can be applied to suppress excessive vibrations of corresponding beam systems. A numerical example is presented to illustrate the theoretical analysis.  相似文献   

12.
The tuning of a dynamic vibration absorber is considered such that either the kinetic energy of the host structure is minimised or the power dissipation within the absorber is maximised. If the host structure is approximated as a damped single degree of freedom, the optimal values for the ratio of the absorber's natural frequency to the host structure and the optimal damping ratio of the absorber are shown to be the same whether the kinetic energy of the host structure is minimised or the power dissipation of the absorber is maximised. It is also demonstrated that the total power input into the system does not depend on the two parameters but only on the host structure's mass.  相似文献   

13.
The effectiveness of the dynamic vibration absorber which consists of a double-cantilever viscoelastic beam and a spring-viscous damper is studied. The absorber is attached to the centre of the main beam. The ends of the main beam are built in and excited sinusoidally by the base motion. In the numerical example, the displacement transmissibility, i.e., the ratio of the displacement at the centre of the main beam to that of the base, is investigated. Variations of the resonant peaks are shown when the absorber parameters are changed. Values of the optimum tuning design parameters are presented, and it is verified that two of the main beam resonances are optimized simultaneously.  相似文献   

14.
Dynamic vibration absorbers for vibration control within a frequency band   总被引:2,自引:0,他引:2  
The use of dynamic vibration absorbers to control the vibration of a structure in both narrow and broadbands is discussed in this paper. As a benchmark problem, a plate incorporating multiple vibration absorbers is formulated, leading to an analytical solution when the number of absorbers yields one. Using this analytical solution, control mechanisms of the vibration absorber in different frequency bandwidths are studied; the coupling properties due to the introduction of the absorber into the host structure are analyzed; and the control performance of the absorber in different control bandwidths is examined with respect to its damping and location. It is found that the interaction between the plate and the absorber by means of the reaction force from the absorber plays a dominant role in a narrow band control, while in a relatively broadband control the dissipation by the absorber damping governs the control performance. When control bandwidth further enlarges, the optimal locations of the absorbers are not only affected by the targeted mode, but also by the other plate modes. These locations need to be determined after establishing a trade-off between the targeted mode and other modes involved in the coupling. Finally, numerical findings are assessed based on a simply-supported plate and a fair agreement between the predicted and measured results is obtained.  相似文献   

15.
This paper is concerned with the dynamic analysis and parameter optimization of both passive and active piezo-electrical dynamic vibration absorbers that are strongly coupled with a single degree of freedom vibrating structure. The passive absorber is implemented by using an RsLs parallel shunt circuit while the active absorber is implemented by feeding back the acceleration of the structure through a second-order lowpass filter. An impedance-mobility approach is used for the electromechanical coupling analysis of both types of absorbers coupled with the structure. Using this approach it is demonstrated that the passive and active absorbers can be made exactly equivalent. A maximally flat frequency response strategy is used to find the optimal damping ratio of the passive absorber while a robust, optimal control theory is used to find that for the active absorber. It is found that the passive optimization strategy corresponds to an optimal, robust feedback control of 2 dB spillover. Simulations and experiments are conducted to support the theoretical findings.  相似文献   

16.
The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted mode and the background modes. It is demonstrated how this effect can be included via a non-dimensional dynamic background flexibility coefficient, extracted from a classic modal analysis for the particular frequency of the selected mode. An explicit calibration procedure is developed starting with the desired maximum amplification, from which the device damper, mass and stiffness are determined, accounting for the background flexibility. Examples demonstrate the influence of the flexibility effect and the efficiency of the proposed procedure.  相似文献   

17.
In a single degree-of-freedom weakly nonlinear oscillator subjected to periodic external excitation, a small-amplitude excitation may produce a relatively large-amplitude response under primary resonance conditions. Jump and hysteresis phenomena that result from saddle-node bifurcations may occur in the steady-state response of the forced nonlinear oscillator. A simple mass-spring-damper vibration absorber is thus employed to suppress the nonlinear vibrations of the forced nonlinear oscillator for the primary resonance conditions. The values of the spring stiffness and mass of the vibration absorber are significantly lower than their counterpart of the forced nonlinear oscillator. Vibrational energy of the forced nonlinear oscillator is transferred to the attached light mass through linked spring and damper. As a result, the nonlinear vibrations of the forced oscillator are greatly reduced and the vibrations of the absorber are significant. The method of multiple scales is used to obtain the averaged equations that determine the amplitude and phases of the first-order approximate solutions to primary resonance vibrations of the forced nonlinear oscillator. Illustrative examples are given to show the effectiveness of the dynamic vibration absorber for suppressing primary resonance vibrations. The effects of the linked spring and damper and the attached mass on the reduction of nonlinear vibrations are studied with the help of frequency response curves, the attenuation ratio of response amplitude and the desensitisation ratio of the critical amplitude of excitation.  相似文献   

18.
A mathematical model describing the dynamic emission of a single mode TE CO2 laser with saturable absorber has been adapted. A six-temperature model has been used to describe the amplifying medium, while a four-coupled energy level is used to describe the selective absorbing medium. The suggested mathematical model allows the investigation of the effects of the intracavity absorber on the mode characteristics of the TE CO2 laser and, moreover, the study of the effect of the laser input parameters on the output laser pulse. The model simulates the passive Q-switch in both low- and high-pressure cases in the absorbing medium.

In addition, numerical solutions of a non-linear rate equation system of the suggested model are quantitatively discussed. The solutions describe the photon number density, the population inversion and the energy transfer processes of amplifying and absorbing media.  相似文献   


19.
A sound absorber in a narrow waveguide is considered. The absorber consists of one monopole and one dipole resonator placed in a narrow pipe. The optimum parameters of the resonators that provide for the maximum absorption of acoustic power are determined. Results of an experimental study of a two-resonator absorbing system are presented. A 95% absorption is achieved.  相似文献   

20.
Application of dynamic vibration absorbers in floating raft system   总被引:2,自引:0,他引:2  
To improve the isolation performance of the traditional floating raft system, dynamic vibration absorber (DVA) is introduced into floating raft in this research. The mathematical models of floating raft system consisting of beams are implemented by assembling the mobility matrices of the subsystems. Then the power flow transmission characteristics of the coupled system with/without the DVAs are investigated to evaluate the vibration reduction performance of DVAs. Numerical simulations are performed to explore the influence of several parameters, such as the setting positions, damping and mass of the passive DVAs, on the vibration reduction effects of DVAs. Moreover the vibration reduction performance of the semi-active absorber adjusting its stiffness adaptively is analyzed for the case of time-varying frequency excitation. In addition, the vibration reduction effects of semi-active DVAs under multi-frequency excitation are investigated. The results show that DVAs can significantly improve the isolation performance of floating raft system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号