首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Absolute intensities, self-broadening coefficients, and foreign-gas broadening by Ar and N2 were measured at temperatures of 197, 233 and 294 K for the 3001II←0000 band of CO2 at 6348 cm-1. Also, the intensity parameters and total band intensity were calculated. We obtained for the vibration-rotation interaction factor the value F(m) = 1 + (0.26 ± 0.06) × 10-2m + (0.92 ±0.32 × 10-4 m2; for the purely vibrational transition moment, we found ¦R00003001II¦к(0.4351 ± 0.0014)()10b3 debye; and, for the total band intensity at STP conditions, Sband(3001II←0000)STP = 1255 ± 9 cm-1 km-1 atm-1.Self-broadening coefficients at 197 and 294 K were also measured, as well as broadening by Ar and N2. Foreign-gas-broadening efficiencies (Ar and N2) were determined. Finally, a comparison is made with measurements by other authors and with theoretically calculated values.  相似文献   

2.
Pressure broadening coefficients for an infrared transition of the methyl radical have been measured for the first time. CH3radicals, generated by pyrolyzing di-tert-butyl peroxide in a flow of either N2or Ar, were probed using a tunable diode laser and a multipass absorption cell. The Lorentz half-width of theQ(6,6) line of the ν2band of CH3at 607.024 cm−1was measured as a function of pressure at 295 K. The broadening coefficients (HWHM) areb(Ar) = 0.0310 ± 0.0012 cm−1atm−1andb(N2) = 0.0390 ± 0.0020 cm−1atm−1. These coefficients are lower than those for CH4–Ar, N2broadening. This may be due to a lower polarizability or smaller effective hard collision diameter for CH3relative to CH4.  相似文献   

3.
A tunable infrared diode laser was used to record 17 fully resolved vibration-rotation transitions in the v1 fundamental band of HCN at 3μ. The experiments were conducted in an absorption cell on room temperature mixtures of HCN diluted by N2 and Ar. The v1 fundamental band strength of HCN was determined to be 267±8 cm-2 atm-1 at 273.2 K. Small but significant reductions in the residual errors were obtained by using the Galatry profile rather than the Voigt profile to fit the experimentally recorded line shapes. Collisional broadening and narrowing parameters were determined simultaneously from Galatry profile fits to the data. The collision-broadened linewidths of HCN lines in N2 and Ar were determined as a function of rotational quantum number of transitions ranging from P(14) to R(14) (3268.22-3353.29 cm-1). The optical diffusion coefficients of HCN in N2 and Ar at 300 K were determined from the collisional narrowing parameters and were 0.074±0.01 and 0.016±0.03 cm2s-1 respectively.  相似文献   

4.
Even for the well-studied and ubiquitous species, OH, the current state of theoretical development of broadening theory does not allow extrapolation from low-temperature laboratory measurements to the range of practical combustion devices. We performed a series of experiments at typical combustion conditions to determine the collision broadening of the P1(5) line of the (0,0) band of OH A2Σ+←X2Π transition by Ar in shock-heated H2-O2-Ar mixtures and by air in H2-air flames over a wide range of stoichiometry (φ=0.01-10.0), temperature (T=780-2440 K), and pressure (p=0.7-10.0 atm). The values of the collision width, ΔνC, were acquired by fitting Voigt profiles to the measured spectral line shapes in flames and to the peak absorption coefficients (kν0) in shock tube experiments. Collision broadening parameters (2γAr, 2γN2, and 2γH2O) were then calculated assuming the linear dependence of ΔνC with pressure—the 2γN2 and 2γH2O values were inferred from 2γAir and the equilibrium concentration of N2 and H2O of a given flame. The temperature dependences of 2γi in our temperature range are, respectively, 1.0, 0.75, and 0.87 for Ar, N2, and H2O. The collision broadening cross sections (σ) deduced from 2γi values are expressed with an assumed form, σi(T)=σi,0(T0/T)k, T0=1000 K: for Ar, σAr,0=63.3 (Å2), k=0.50; for N2, σN2,0=68.0 (Å2), k=0.25; for H2O, σH2O,0=188.8 (Å2), k=0.37.  相似文献   

5.
This paper is devoted to the measurement of pressure shift and broadening parameters of water-vapor lines of the pure rotational transition 110-101 in the ground vibrational state of H216O at 556.936 GHz, H217O at 552.02 GHz, H218O at 547.676 GHz, and the vibrationally excited state v2=1 line of H216O at 658.003 GHz. The broadening coefficients of the line at 556.936 GHz (for N2 and O2 as perturbing gases) coincide within the errors with the values obtained recently by Seta et al. [Pressure broadening coefficients of the water vapor lines at 556.936 and 752.033 GHz. JQSRT 2008;109:144-50] by means of a very different technique (THz-TDS). Pressure shift and broadening for other lines were measured for the first time. Comparison of our results with previous measurements and theoretical calculations is presented.  相似文献   

6.
Using Mößbauer effect measurements in the temperature range between 3 °K and 310 °K the magnetic fields at the nucleus in iron-stilbene, FeCl2·H2O and FeCl3 are determined to beH T=0=(250±10) kOe, (252±18) kOe and (468±10) kOe; a Néel-temperature ofT N=(23±1) °K is measured for iron-stilbene. The electric quadrupole splittings atT=0 °K for iron-stilbene and FeCl2 ·H 2 O, ΔE=(+2.52±0.02) mm/sec and (+2.50±0.05) mm/sec, yield electric field gradients at the iron nucleus ofq z=+9.7·1017 V/cm2 and +9.6·1017 V/cm2, whereq z⊥H; Debyetemperatures of θ=162 °K and 188 °K are obtained. The energy of the excited 3d-electron levels in iron-stilbene is estimated to Δ1=309 cm?1 and Δ2=618cm?1 as deduced from the temperature dependence ofΔE. In contrast to the suggestion ofEuler andWillstaedt bivalence of the iron in ironstilbene is found; its composition is shown to be 4(FeCl2 ·H 2O)·stilbene.  相似文献   

7.
Absorption of CO laser radiation (v = 8→7, J = 14→15 transition at 1901.762 cm-1) by H2O has been studied in shock-heated H2/O2/Ar mixtures over the temperature range 1300–2300 K. This laser transition is nearly coincident with the v2-band 123,10←112,9 transition of H2O at 1901.760 cm-1, thereby providing a convenient and sensitive absorption-based H2O diagnostic useful for studies of combustion. The collision-broadening parameter for this H2O line, due to broadening by Ar, was determined to be 2γ (cm-1atm-1) = 0.027 (T/1300)-0.9 in the temperature range 1300–2300 K. Calculations of the H2O absorption coefficient (at 1901.762 cm-1) based on this expression for 2γ are presented for the temperature range 300–2500 K and pressure range 0.3–1 atm.  相似文献   

8.
A tunable diode laser was used to scan 33 vibration-rotation lines in the fundamental band of CO in room-temperature CO-N2 and CO-Ar mixtures. Each absorption record was fitted with a Voigt profile from which the line strength and collision width were determined. The fundamental band strength of 12C16O at 273.2°K was determined to be 283±4 cm-2 atm-1. Results are also presented for the rotational quantum number dependence of the collision width for broadening by N2 and Ar.  相似文献   

9.
The strength of the fundamental absorption band of nitric oxide at 5.3 μm and collision halfwidths of nitric oxide lines broadened by nitrogen, argon, and combustion gases were measured in absorption cell, flat flame and shock tube experiments using a tunable diode laser. Room temperature absorption measurements were made in an absorption cell filled with NO/N2 or NO/Ar mixtures or with probe-extracted combustion gases. High temperature (to 2500 K) absorption measurements were performed for NO in N2 and NO in Ar using a shock tube, and for NO in combustion gases using a flat flame burner.Absorption measurements were made on lines from 1860–1925 cm?1, (Ω=12 and 32,P(52-R (292)) resulting in a band strength of 123±8 cm-2 atm?1 at 273.2 K. Collision halfwidth dependencies for each broadening species were examined as a function of rotational quantum number and temperature.  相似文献   

10.
The efficiency of resonance fluorescence, Y, of the strontium resonance line (1P11S0 transition) at 4607.33 Å was measured in CO/N2O, CO/O2/Ar, and H2/O2/CO2/N2 flames at atmospheric pressure. From these data, the specific quenching cross sections, σqu, for CO2 and CO were found to be (60 ± 10) Å2 and  (300 ± 60) Å2, respectively. The experimental cross sections were confronted with the intermediate ionic-state curve-crossing model and chemical quenching model, respectively.  相似文献   

11.
Line profiles of the J = 1-0 transition of the hydrogen chloride, H35Cl and H37Cl isotopomers, were measured with a BWO-based submillimeter-wave spectrometer at AIST in real form: three hyperfine transitions for each isotopomer, i.e., total six lines at 625 and 626 GHz. The effect of foreign gases on the broadening and shift was determined for N2, O2, and Ar. The modified Voigt function was applied as the line shape function for preliminary analysis, where the collisional-narrowing effect was clearly observed. In the final analysis, we applied the Galatry function and determined the integral intensity, line center position, Lorentzian width, and contraction parameter for each absorption line. The magnitudes of the foreign-gas pressure-broadening coefficients decrease in order of N2, O2, and Ar. The line-shift coefficients were clearly observed, the magnitudes of which decrease in order of Ar, O2, and N2. The pressure dependence of contraction parameter was determined, although with poor precision.  相似文献   

12.
Conversion electron measurements with an electrostatic spectrometer proved the existence of the 1,565±6 eV transition in201Hg. The conversion intensity ratios,N 1/N 2 =1.2±0.2,N 1/N 3=1.1±0.2,N 2/N 3=0.92±0.15,N 4/N 3=0.03± 0.02 andN 5/N 3=0.04 ±0.02 were determined. These values agree with our calculations for the M1±E2 multipolarity with theE2/M1 mixing ratioδ 2=(l.l±0.3)xl0?4 and exclude all pure multipolarities withL≦4. The total conversion coefficient for the aboveM1 +E2 mixture was evaluated to be (4.7±0.7)× 104. The reducedB(M1, 1/2→3/2) probability was derived to be (3.9 ±1.2) × 10?3 (e?/2Mc)2. The natural widths of theN-subshell conversion lines in mercury were found to beΓ(N 1)=8.3± 1.5,Γ(N 2) =5.8±1.5 and Γ(N 3) =6.5±1.0 eV. Monte Carlo calculations of electron scattering in matter yielded the conversion line shapes in qualitative agreement with the experiment.  相似文献   

13.
We have made line-strength measurements in the N2O ν3-fundamental region using a tunable diode-laser spectrometer. From these measurements and the Herman-Wallis factor determined by Boissy et al., we find the ν3-fundamental band strength to be Sv = 1203 ± 22 cm−2 atm−1 at 297 K. Line-broadening parameters for two ν3-fundamental lines were determined using nitrogen (N2) as the broadening gas. Measured strengths and N2 line-broadening parameters for several (ν12 + ν3ν12) hot-band lines are also presented.  相似文献   

14.
Conversion electron measurements of the low-energy transition depopulating the isomeric 8+ level in 208Po yielded Eγ = 4025 ± 20 eV and the conversion intensity ratios N1/N2 ? 0.2, N2/N3 = 0.75 ± 0.10, N4.5/N3 ? 0.2, O/N3 = 0.35 ± 0.10, P/N3 ? 0.1 and N3/M3 = 0.4 ± 0.2. These ratios are in accord with our calculations for the E2 multipolarity and exclude all other multipolarities with L ≦ 4. The total conversion coefficient was calculated to be 1.31 × 107.  相似文献   

15.
We employed tunable diode laser absorption spectroscopy to measure the line strength, the methane (CH4), ethane (C2H6) and the propane (C3H8) broadening coefficients for the 523–422 H2O transition at 3619.61 cm?1. Water amount fractions generated by a stable and accurate humidity transfer standard, traceable to the SI units via the German national humidity standard, were used to calibrate the spectroscopic line strength measurements. We focus on the traceability of the measured line data to the SI and on uncertainty assessments following the guidelines of the Guide to the Expression of Uncertainty in Measurement. We determined the line strength to be (8.42 ± 0.07)×10?20 cm?1/(cm?2 molecule) corresponding to a relative uncertainty of ±0.8%. To the best of our knowledge, we report the first methane, ethane and propane broadening coefficients of (8.037 ± 0.056)×10?5 cm?1/hPa, (9.077 ± 0.064)×10?5 cm?1/hPa and (10.469 ± 0.073)×10?5 cm?1/hPa for the 523–422 H2O transition at 3619.61 cm?1, respectively. The relative combined uncertainties of the stated CH4, C2H6 and C3H8 broadening coefficients are in the ±0.7% range.  相似文献   

16.
High resolution Infrared Polarisation Spectroscopy (IRPS) and Infrared Laser Induced Fluorescence (IRLIF) techniques were used to probe CO2/N2 binary gas mixture at atmospheric pressure and ambient temperature. The probed CO2 molecules were prepared by laser excitation to an overtone and combination ro-vibrational state (1201, J=15) of CO2, centred at 4988.6612 cm-1. IRPS and IRLIF line profiles were recorded for several CO2/N2 binary mixtures. The observed IRLIF line shapes have the expected Lorentzian form while the observed IRPS line shapes are narrower by a factor of two than those recorded with the IRLIF and appear to have a Lorentzian-cubed profile. The recorded line profiles provide measurements of the pressure-broadening coefficient directly at atmospheric pressure. The Full-Width-Half-Maxima (FWHM) pressure broadening coefficients are measured, based on IRLIF, to be 0.2174±0.0092 cm-1atm-1 and 0.1327 ±0.0077 cm-1atm-1 for self- and N2 collision broadening, respectively. The broadening coefficients obtained based on IRPS were measured to be ~8% larger than those obtained with IRLIF.  相似文献   

17.
We report specific heat measurements on a CeAl2 single crystal between 0.02 and 1 K. Above 0.08 K, we found C0 = γT + βT3 with γ = (130±0.5) mJ/K2mole and β = (142±1) mJ/K4mole in good agreement with previous results above 0.3 K. Below 0.08 K, an excess specific heat CN = αT?2 with α = (6.4±1) mJK/mole was detected and interpreted in terms of hyperfine splitting of the Al27 nuclear states. Our results suggest that in CeAl2 (complex) antiferromagnetism coexists with the Kondo effect at least down to 20 mK.  相似文献   

18.
A narrow-band, frequency-doubled, tunable dye laser has been used to excite fluorescence from the A2Σ+, ν′ = 0 state of NO. Collision-free lifetimes were measured for 21 different K′ levels giving a mean radiative lifetime τ = 217 ± 4 ns. Electronic quenching rate constants of NO (A2Σ+, ν′ = 0) were measured for O2, N2, H2O, CO2 and Ar. No dependence of the quenching-rate constant on the initially excited rotational level was observed.  相似文献   

19.
Results of (dM/dH) measurements on tetrahedral K2MnCl4·2H2O as a function of temperature and magnetic field, are presented. An antiferromagnetic transition along the tetragonal axis is observed at TN = (3.05±0.05) K. The H-T magnetic phase diagram was completely determined, and shows the usual characteristics of that of a low anisotropy antiferromagnet. The T = 0 critical fields are compatible with the values HE = (29.2±0.3) kOe and HA = (5.9±0.6) kOe for the exchange and anisotropy fields.  相似文献   

20.
The natural lifetimes of the (3P)4s2P3/2,1/2 levels of the Ar(II) spectrum have been determined from the natural broadening of argon lines, measured with a Fabry—Pérot interferometer. The natural broadening was determined from the lines with wavelengths of 4880 and 4965 Å by comparing them with the lines at 4806 and 5009 Å having negligible natural broadening. The natural lifetime of the 4s2P3/2 level appeared to be τ = 0.19 (±6%) ns and of the 4s2P1/2 level τ = 0.18 (±15%) ns. These values are about 1.5 to 2 times as small as those determined by other authors either experimentally by using a Fabry—Pérot interferometer by the method of Ballik, or calculated using intermediate coupling.The differences between the two experimental methods are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号