首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tapioca and potato starches were used to investigate the effect of heat–moisture treatment (HMT; 95–96 °C, 0–60 min, 1–6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47–63% and 0–36%, and those of HMT potato starch were 89–92% and 63–94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.  相似文献   

2.
Unripe banana fruit of Musa acuminata (Musa AAA; Hom Khieo) and Musa sapientum L. (Musa ABB; Namwa) growing in Chiang Rai (Thailand) were used for extraction. The yield of the starches was 16.88% for Hom Khieo (HK) and 22.73% for Namwa (NW) based on unripe peeled banana fruit. The amylose contents of HK and NW were 24.99% and 26.23%, respectively. The morphology of starch granules was oval shape with elongated forms for large granules and round shape for small granules. The HK and NW showed B-type crystalline structure and the crystallinities were 23.54% and 26.83%, respectively. The peak temperature of gelatinization was around 77 °C and the enthalpy change (ΔH) was 3.05 and 7.76 J/g, respectively. The HK and NW banana starches showed 1.27 ± 0.12 g/g and 1.53 ± 0.12 g/g water absorption capacity, and 1.22 ± 0.11 g/g and 1.16 ± 0.12 g/g oil absorption capacity, respectively. The swelling power of the banana starches was 17.23 ± 0.94 g/g and 15.90 ± 0.15 g/g, respectively, and the percentage of solubility in water showed 26.43 ± 2.50 g/g and 20.54 ± 0.94 g/g, respectively. The banana starches showed very poor flow character. The HK and NW starches have the potential to be used in powder base preparations with no effect on the sensory texture of the product at 15% w/w maximum.  相似文献   

3.
Comparison of A and B starch granules from three wheat varieties   总被引:2,自引:0,他引:2  
Zeng J  Li G  Gao H  Ru Z 《Molecules (Basel, Switzerland)》2011,16(12):10570-10591
Three starches from the wheat varieties AK58, ZM18 and YZ4110 were separated into large (A) and small (B) granules, which were characterized structurally and evaluated for their functional properties. SEM results showed that the size of A-granules from ZM18 and YZ4110 were about the same, but the sizes of A-granules and B-granules from AK58 were larger than those of ZM18 and YZ4110. FTIR spectra showed that all the samples exhibited a similar pattern, with seven main modes with maximum absorbance peaks near 3,500, 3,000, 1,600, 1,400, 1,000, 800, 500 cm-1. The B-granules of ZM18 and YZ4110 had less amylose content, although the difference among the total amylose contents of the three unfractionated starches was not significant. X-ray diffraction (XRD) patterns showed predominantly A-type crystallinity for all the starches. The A-granules showed sharper XRD patterns than the other starches. DSC analysis showed that the A-granules had broader ranges of gelatinization temperatures than the B-granules from the same wheat variety. The gelatinization enthalpy (ΔH) of A-granules was higher than that of B-granules. AK58 exhibited the smallest enthalpy, while ZM18 showed the largest enthalpy. In pasting tests, the A-granule starch of AK58 had higher peak, final and setback viscosity, lower breakdown and pasting temperature, and the B-granule starch and unfractionated starch of AK58 had lower peak, breakdown, final and setback viscosity and higher pasting temperature than ZM18 and YZ4110.  相似文献   

4.
The objective of this study was to obtain and characterize flours and starches from the avocado seeds of Hass and landrace cultivars. The morphological, physical-chemical, structural, thermal and rheological characteristics were evaluated. The flour yield of the Hass and landrace cultivars was 41.56 to 46.86% (w/w), while for starch, it was 35.47 to 39.57% (w/w) (cv. Hass and landrace, respectively). Scanning electron microscopy (SEM) revealed the presence of oval starch granules and other particles in flour, in contrast to flours, starches showed lower ash, proteins and lipids content. However, the amylose content was higher in starches (42.25–48.2%). Flours showed a higher gelatinization temperature (Tp = 73.17–73.62 °C), and their starches presented greater gelatinization enthalpy (∆Hgel = 11.82–13.43 J/g). All samples showed a B-type diffraction pattern, and the crystallinity was higher in the flours. The rheological analysis (flow curves and viscoelastic tests) evidenced a pseudoplastic (n = 0.28–0.36) behavior in all samples analyzed, but the consistency index (k) was higher in starches. In general, the flours and starches from avocado seeds presented interesting proximal, thermal and functional properties for possible application in food systems, and these findings could contribute to the revaluation of this by-product.  相似文献   

5.
The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm~(-1) related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.  相似文献   

6.
大米淀粉糊化过程的光谱分析   总被引:3,自引:0,他引:3  
采用衰减全反射傅立叶变换红外光谱仪跟踪测定了不同品种大米淀粉的糊化过程,同时与X-射线衍射仪测定的淀粉结晶度相对比,研究了淀粉颗粒内结晶结构在糊化过程中变化的详细情况.利用红外光谱仪计算出天然大米淀粉及其在糊化过程中各个阶段代表结晶区特征的1047cm-1和代表非晶区特征的1022cm-1两处红外吸收峰强度的比值.结果表明,天然淀粉的结晶区主要由支链淀粉侧链的双螺旋结构所形成;在加热过程中淀粉的结晶结构被破坏,并且直链淀粉含量越高,其结晶结构在糊化过程中破坏越慢,说明直链淀粉能抑制淀粉结晶结构的破坏.利用X-射线衍射仪测定了大米淀粉糊化过程各个阶段的结晶度,进一步验证了淀粉的结晶结构在糊化过程中的损失.虽然,两种测定方法对"结晶度"的定义不同,但对于淀粉结晶程度的测定具有相关性和可比性,能为研究淀粉的糊化行为提供有利的补充信息.  相似文献   

7.
In order to explore the processing and application potential of Chinese yam starch, nine kinds of Chinese yam starch (GY11, GY5, GY2, GXPY, LCY, SFY, MPY, SYPY, ASY) from South China were collected and characterized. The chemical composition, rheological properties, thermal properties, and in vitro starch digestion were compared, and the correlation between the structure and processing properties of these yam starches was analyzed using Pearson correlation. The results show that GY2 had the highest amylose content of 28.70%. All the yam starches were similarly elliptical, and all the yam starch gels showed pseudoplastic behavior. Yam starches showed similar pasting temperatures and resistant starch content, but SYPY showed the largest particle size (28.4 μm), SFY showed the highest setback (2712.33 cp), and LCY showed the highest peak viscosity (6145.67 cp) and breakdown (2672.33 cp). In addition, these yam starches also showed different crystal types (A-type, B-type, C-type), relative crystallinity (26.54–31.48%), the ratios of 1045/1022 cm−1 (0.836–1.213), pasting properties, and rheological properties, so the yam starches have different application potentials. The rheological and pasting properties were related to the structural properties of starch, such as DI, Mw, and particle size, and were also closely related to the thermodynamic properties. The appropriate processing methods and purposes of the processed products of these yam starches can be selected according to their characteristics.  相似文献   

8.
半夏淀粉的理化特性   总被引:1,自引:0,他引:1  
研究了不同产地的4种半夏淀粉的理化特性,包括直链淀粉含量、膨胀度、溶解性、持水性、淀粉粒大小和形貌、结晶类型、热特性和糊化特性等。结果表明,这些半夏淀粉中直链淀粉含量为18.60%~23.91%;膨胀度21.53%~23.09%;溶解度11.5%~32.3%;持水性100.3%~119.0%。淀粉粒单粒球形,卵形或圆半球形,直径2~20μm,复粒由2~3个分粒组成,其结晶类型均为C型,结晶度15.0%~37.9%。用差示扫描量热仪测得的转变温度TO、TP和TC分别为71.58~77.75℃、83.03~83.84℃和89.41~90.99℃,热焓为4.316~5.809 J/g。用快速粘度分析仪测定了4种半夏淀粉的糊化特征值:峰值粘度、热糊粘度、冷糊粘度、稀懈值和回复值分别为149.5~226.2、97.7~127.2、141.8~194.3、50.4~99.0和44.2~67.2 RVU。糊化温度77.8~79.9℃,峰值时间8.3~8.7 min。  相似文献   

9.
Extrusion is an interesting technological tool that facilitates pulse formulation into flour mixtures, with tailored fibre content, total antioxidant capacity (TAC) and glycemic index (GI) among other components in final formulas. The gluten-free (GF) market has significantly grown during the last years. GF products have evolved from specialty health foods to products targeted to the general population and not only associated to celiac consumers. This study evaluates how temperature, cereal base (rice/corn) and pulse concentration affect extruded flour properties and which conditions are more efficient to develop a gluten-free flour with high TAC and low GI. Additionally, it evaluated the effect of this optimal formula after the baking process. The results showed an increase of total phenol (TP) and antioxidant activity with extrusion, with a temperature-dependent effect (130 °C ≥ 120 °C ≥ 110 °C), which may imply an enhanced bioaccessibility of phenolics compounds after extraction. Extrusion increased GI in comparison to native flour; however, a dough temperature of 130 °C resulted in a significantly (p ≤ 0.05) lower GI than that observed for 110–120 °C doughs, probably associated to the pastification that occurred at higher temperatures, which would decrease the degree of gelatinization of the starches and therefore a significant (p ≤ 0.05) GI reduction. Corn-lentil flour showed higher antioxidant properties and lower GI index in comparison with rice-lentil blends. The formulation of the optimal blend flour into a baked product (muffin) resulted in a significant loss of antioxidant properties, with the exception of the reducing power (FRAP), although the final antioxidant values of the baked product were in the range of the original native flour blend before any process.  相似文献   

10.
Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets’ starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets’ starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.  相似文献   

11.
Hot-melt extrusion (HME) has great advantages for the preparation of solid dispersion (SD), for instance, it does not require any organic solvents. Nevertheless, its application to high-melting-point and thermosensitive drugs has been rarely reported. In this study, thermally unstable curcumin (Cur) was used as a drug model. The HME process was systematically studied by adjusting the gradient temperature mode and residence time, with the content, crystallinity and dissolution of Cur as the investigated factors. The effects of barrel temperature, screw speed and cooling rate on HME were also examined. Solubility parameters and the Flory–Huggins method were used to evaluate the miscibility between Cur and carriers. Differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, equilibrium solubility and in vitro and in vivo experiments were used to characterize and evaluate the results. An amorphous Cur SD was successfully obtained, increasing the solubility and release of Cur. In the optimal process, the mass ratio of Cur to Eudragit® E PO (EPO) was 1:4 and the barrel temperature was set at a gradient heating mode (130 °C–135 °C–140 °C–145 °C–150 °C–155 °C–160 °C) at 100 rpm. Related pharmacokinetic test results also showed the improved bioavailability of the drug in rats. In a pharmacodynamic analysis of Sprague–Dawley rats, the Cmax and the bioavailability of the Cur-EPO SD were 2.6 and 1.5 times higher than those of Cur, respectively. The preparation of the amorphous SD not only provided more solubility but also improved the bioavailability of Cur, which provides an effective way to improve the bioavailability of BCS II drugs.  相似文献   

12.
A large quantity of longan fruits (Dimocarpus longan Lour.) produced annually are processed into many products, one of which is black longan, from which the dried, dark-brown meat has been used medicinally in traditional medicine, while the starch-containing seeds are discarded. In this study, starch samples (BLGSs) were isolated from seeds of black longan fruits prepared using varied conditions. The in vitro digestibility was determined in comparison with those extracted from fresh (FLGS) and dried (DLGS) seeds. Scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy were employed to evaluate the starch properties. The results showed that the yields of FLGS, DLGS, and BLGSs were 20%, 23%, and 16–22% w/w, respectively. SEM images showed starch granules of mixed shapes, with sizes up to 15 µm in all samples. XRD patterns confirmed an A-type crystallinity for FLGS and DLGS, with strong refraction peaks at 2θ = 15°, 17°, 18°, and 23°, while BLGSs also showed detectable peaks at 2θ = 10° and 21°, which suggested V-type structures. Thermal properties corroborated the changes by showing increases in peak gelatinization temperature (Tp) and enthalpy energy (ΔH) in BLGSs. The paste viscosity of BLGSs (5% w/w) decreased by 20–58% from that of FLGS. The FTIR peak ratio at 1045/1022 and 1022/995 cm−1 also indicated an increase in ordered structure in BLGSs compared to FLGS. The significant increase in the amounts of slowly digestible starch (SDS) and resistant starch (RS) in BLGSs compared to FLGS, especially at a prolonged incubation time of 20 (4.2×) and 30 days (4.1×), was proposed to be due to the heat-induced formation of starch inclusion with other components inside the seed during the black longan production process. Thus, black longan seed could be a new source of starch, with increased RS content, for potential use in the food and related industries.  相似文献   

13.
Sweet potato is a root tuber crop and an important starch source. There are hundreds of sweet potato varieties planted widely in the world. Starches from varieties with different genotype types and originating from different countries have not been compared for their physicochemical properties. In the research, starches from 44 sweet potato varieties originating from 15 countries but planted in the same growing conditions were investigated for their physicochemical properties to reveal the similarities and differences in varieties. The results showed that the 44 starches had granule size (D[4,3]) from 8.01 to 15.30 μm. Starches had different iodine absorption properties with OD680 from 0.259 to 0.382 and OD620/550 from 1.142 to 1.237. The 44 starches had apparent amylose content from 19.2% to 29.2% and true amylose content from 14.2% to 20.2%. The starches exhibited A-, CA-, CC-, or CB-type X-ray diffraction patterns. The thermograms of 44 starches exhibited one-, two-, or three-peak curves, leading to a significantly different gelatinization temperature range from 13.1 to 29.2 °C. The significantly different starch properties divide the 44 sweet potato varieties into different groups due to their different genotype backgrounds. The research offers references for the utilization of sweet potato germplasm.  相似文献   

14.
The aim of the study was to assess the effect of soil type and the application of fertilizer composed of ashes from biomass combustion to potatoes on selected physicochemical, rheological, and thermal properties of potato starches isolated by using the laboratory method. Potatoes were grown in Haplic Luvisol (HL) and Gleyic Chernozem (GC) soil and fertilized with different doses of biomass combustion ash (D1–D6) with different mineral contents. The thermodynamic characteristics of gelatinization and retrogradation were identified by DSC. The analyses of rheological properties included the determination of the gelatinization characteristics by using the RVA method, flow curves, and assessment of the viscoelastic properties of starch gels. It was found that the starches tested contained from 24.7 to 29.7 g/100 g d.m. amylose, and the clarity of 1% starch pastes ranged from 59% to 68%. The gelatinization characteristics that were determined showed statistically significant differences between the starches analyzed in terms of the tested factors. The value of maximum viscosity and final viscosity varied, respectively, in the range of 2017–2404 mPa·s and 2811–3112 mPa·s, respectively. The samples of the potato starches studied showed a non-Newtonian flow, shear thinning, and the phenomenon of thixotropy. After cooling, the starch gels showed different viscoelastic properties, all of which were weak gels (tan δ = G″/G′ > 0.1).  相似文献   

15.
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.  相似文献   

16.
The objective of this study was to characterize the properties of pectin extracted from sugar beet pulp using subcritical water (SWE) as compared to conventional extraction (CE). The research involved advanced modeling using response surface methodology and optimization of operational parameters. The optimal conditions for maximum yield of pectin for SWE and CE methods were determined by the central composite design. The optimum conditions of CE were the temperature of 90 °C, time of 240 min, pH of 1, and pectin recovery yield of 20.8%. The optimal SWE conditions were liquid-to-solid (L/S) ratio of 30% (v/w) at temperature of 130 °C for 20 min, which resulted in a comparable yield of 20.7%. The effect of obtained pectins on viscoamylograph pasting and DSC thermal parameters of corn starch was evaluated. The contents of galacturonic acid, degree of methylation, acetylation, and ferulic acid content were higher in the pectin extracted by SWE, while the molecular weight was lower. Similar chemical groups were characterized by FTIR in both SWE and CE pectins. Color attributes of both pectins were similar. Solutions of pectins at lower concentrations displayed nearly Newtonian behavior. The addition of both pectins to corn starch decreased pasting and DSC gelatinization parameters, but increased ΔH. The results offered a promising scalable approach to convert the beet waste to pectin as a value-added product using SWE with improved pectin properties.  相似文献   

17.
Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 μm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.  相似文献   

18.
Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7–35.4% to 2.7–20%), increased the damage starch (from about 0.5–1.6% to 2.4–23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.  相似文献   

19.
The present study aimed to determine changes in the properties of starch triggered by its long-lasting (1, 2, 4, 7, 10, or 14 days) retention with citric acid (5 g/100 g) at a temperature of 40 °C. The starch citrates obtained under laboratory conditions had a low degree of substitution, as confirmed via NMR and HPSEC analyses. The prolonging time of starch retention with citric acid at 40 °C contributed to its increased esterification degree (0.05–0.11 g/100 g), swelling power (30–38 g/g), and solubility in water (19–35%) as well as to decreased viscosity of the starch pastes. Starch heating with citric acid under the applied laboratory conditions did not affect the course of DSC thermal characteristics of starch pasting. The low-substituted starch citrates exhibited approximately 15% resistance to amylolysis.  相似文献   

20.
The increase in health and safety concerns regarding chemical modification in recent years has caused a growing research interest in the modification of starch by physical techniques. There has been a growing trend toward using a combination of treatments in starch modification in producing desirable functional properties to widen the application of a specific starch. In this study, a novel combination of gamma irradiation and annealing (ANN) was used to modify sago starch (Metroxylon sagu). The starch was subjected to gamma irradiation (5, 10, 25, 50 kGy) prior to ANN at 5 °C (To-5) and 10 °C (To-10) below the gelatinization temperature. Determination of amylose content, pH, carboxyl content, FTIR (Fourier Transform Infrared) intensity ratio (R1047/1022), swelling power and solubility, thermal behavior, pasting properties, and morphology were carried out. Annealing irradiated starch at To-5 promoted more crystalline perfection as compared to To-10, particularly when combined with 25 and 50 kGy, whereby a synergistic effect was observed. Dual-modified sago starch exhibited lower swelling power, improved gel firmness, and thermal stability with an intact granular structure. Results suggested the potential of gamma irradiation and annealing to induce some novel characteristics in sago starch for extended applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号