首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young’s modulus, strain–stress behavior, fracture strength, and fracture toughness of (0≤×≤1) materials have been investigated in the temperature range 20–1,000°C. Young’s moduli of and , measured by resonant ultrasound spectroscopy, were 130±1 and 133±3 GPa, respectively. The nonlinear stress–strain relationship observed by four-point bending at room temperature was inferred as a signature of ferroelastic behavior of the materials. Above the ferroelastic to paraelastic transition temperature, the materials showed elastic behavior, but due to high-temperature creep, a nonelastic respond reappeared above ∼800°C. The room temperature fracture strength measured by four-point bending was in the range 107–128 MPa. The corresponding fracture toughness of , measured by single edge V-notch beam method, was 1.16±0.12 MPa·m1/2. The measured fracture strength and fracture toughness were observed to increase with increasing temperature. The fracture mode changed from intragranular at low temperature to intergranular at high temperature. Tensile stress gradient at the surface of the materials caused by a frozen-in gradient in the oxygen content during cooling was proposed to explain the low ambient temperature fracture strength and toughness.  相似文献   

2.
Subsolidus phase ratios of the Na2MoO4-CoMoO4-Sc2(MoO4)3 system have been studied by X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. A phase of variable composition Na1 ? x Co1 ? x Sc1 + x (MoO4)3, 0 ≤ x ≤ 0.5 having NASICON structure (space group \(R\bar 3c\) ) and triple molybdate NaCo3Sc(MoO4)5 crystallizing in triclinic system (space group \(P\bar 1\) ) have been obtained. The high conductivity of Na1 ? x Co1 ? x Sc1 + x (MoO4)3 allows the phase of variable composition to be regarded as a promising sodium-ion conducting solid electrolyte.  相似文献   

3.
An electron diffraction and microscopy study of the CaFexMn1−xO3−y system treated at 1100°C in air has been performed. An increase of y is accompanied by an increase of the cubic perovskite substructure parameter, the nonstoichiometry being accommodated in several ways. The system contains two solid solutions of the perovskite-type (P) and of the brownmillerite-type (B) and also an intermediate phase (x = 0.6) which makes disordered intergrowth with the B-type solid solution. These results are discussed in terms of multitwinning, randomly dispersed oxygen deficiency, and ordered and disordered intergrowth formation.  相似文献   

4.
Substitution of Ca by La in initial cubic double perovskite Ba4(Ca2Nb2)O11[VO]1 allowed obtaining phases with a similar structure with a lower content of structural oxygen vacancies, Ba4(La x Ca2 ? x Nb2)O11 + 0.5x [VO]1 ? 0.5x (x = 0.5, 1, 1.5, 2). The impedance technique was used to measure the temperature dependences of conductivity in the atmosphere of dry and humid air. Transport numbers determined using the EMF method in an oxygen-air and water steam concentration cells point to the predominantly hole nature of conductivity in the high-temperature region (T > 600°C) and to predominance of proton conductivity in the low-temperature region. Activation energies of hole and proton conductivity were calculated. Thermogravimetric measurements were carried out under heating from 25 to 1000°C with simultaneous mass-spectrometric determination of evolved H2O and CO2. The properties of the studied Ba4(La x Ca2 ? x Nb2)O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases were compared with the earlier studied Ba4 ? x La x (Ca2Nb2)O11 + 0.5x phases with similar lanthanum content.  相似文献   

5.
Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 ? x )1 ? y Mn0.5Ti0.5O3 ? δ (x = 0–0.25, y = 0–0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 ? δ (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)0.97Mn0.5Ti0.5O3 ? δ and (La0.75Sr0.25)0.97Mn0.5Ti0.5O3 ? δ and a cathode of Sm0.5Sr0.5CoO3 ? δ are manufactured and tested using the voltammetry technique.  相似文献   

6.
Subsolidus phase ratios in the Na2MoO4-NiMoO4-Sc2(MoO4)3 system have been studied using X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. A phase of variable composition Na1 ? x Ni1 ? x Sc1 + x (MoO4)3 (0 ≤ x ≤ 0.5) having NASICON structure (space group \(R\bar 3c\) ) and a triple molybdate crystallizing in triclinic system (space group \(P\bar 1\) ) have been obtained. The high conductivity of Na1 ? x Ni1 ? x Sc1 + x (MoO4)3 allows the phase of variable composition to be regarded as a promising sodiumion-conductive solid electrolyte.  相似文献   

7.
The thermal behaviour of chemically deintercalated samples obtained by HCl treatment of non-stoichiometric Li/Ni mixed oxides is studied. A multi-step reduction of Ni with O2 evolution is observed between room temperature and 800C. Two cation redistribution processes are shown by the exothermal occurrence of a spinel phase at 300C and the endothermal reduction to a rock-salt phase with random distribution of Li and Ni cations in octahedral sites at 800C.The authors wish to express their acknowledgement to CICYT and PFPI for financial support.  相似文献   

8.
Mn4+ doped and Dy3+, Tm3+ co-doped MgAl2Si2O8-based phosphors were prepared by conventional solid state reaction at 1,300 °C. They were characterized by thermogravimetry, differential thermal analysis, X-ray powder diffraction, photoluminescence, and scanning electron microscopy. The luminescence mechanism of the phosphors, which showed broad red emission bands in the range of 600–715 nm and had a different maximum intensity when activated by UV illumination, was discussed. Such a red emission can be attributed to the 2E → 4A2 transitions of Mn4+.  相似文献   

9.
The conductivity and ion and proton transfer numbers were measured in La1 ? x Sr x Sc1 ? y Mg y O3 ? α system (x = y = 0.10–0.20). The partial conductivities (total ion, proton, oxygen, hole) and their effective activation energies were calculated. The measurements were carried out in air with respect to humidity (pH2O = 0.04?2.65 kPa) within the temperature range from 630 to 920°C.  相似文献   

10.
《Solid State Sciences》2004,6(9):897-905
An original structure of chemical formula Bi13As3Mo6O42 has been obtained in the system Bi2O3:MoO3:As2O3 by chemical transport reaction in presence of As2O3. It crystallizes in the monoclinic system, space group P21/n with a=12.7770(11) Å, b=5.5890(4) Å, c=27.971(2) Å and β=101.009(7)°. The structure exhibits infinite [Bi13As3Mo6O42]n complex pillars with a quite different organization compared with original [Bi12O14]n8n+ columns surrounded by (MoO4) tetrahedra in the Bi2/3[Bi12O14](MoO4)5 prototype structure. Nevertheless, the heavy atoms design almost perfect fluorite subnetwork—a common structural feature of these pillar structures. The conditions of synthesis via solid-state chemistry using basic oxides Bi2O3, As2O3 and MoO3 have been established and the phase identified by X-ray powder pattern. The indexing fits single crystal data as well as the values of volumic mass, ρexp=7.04(4) g cm−3 for ρX=7.096 g cm−3 for Z=4. This Bi13As3Mo6O42 phase shows also an interesting anionic conductivity around σ=7.98×10−4 S cm−1 at 980 K and is compared with related phases.  相似文献   

11.
LaNixFe1–xO3 perovskites (0≤x≤1) are efficient catalysts in steam reforming of methane (optimum ratio H2O/CH4=1) for syngas production. For low x values (x≤0.4), the three-metal structure is partly maintained with a strong interaction between free nickel and the perovskite, the carbon formation is limited and the regeneration of the three-metal perovskite by recalcination is possible. For higher x values (x>0.4), only a bimetallic LaFeO3 is maintained during the reaction and the catalysts perform as free nickel on LaFeO3 and La2O3. Coke formation becomes important and the regeneration gives two distinct perovskites, LaFeO3 and LaNiO3. The increase in H2O/CH4 from 1 to 3 enhances the oxidating power, leads to a decrease in the activity and favours CO2 formation.  相似文献   

12.
Single crystals of the new phase Ba5Ru2−xAl1+x−yCuyO11 (x=0.378, y=0.085) have been grown from a powder mixture of BaCO3, RuO2 and CuO in an alumina crucible. The new compound crystallizes isostructurally to Ba5Ir2AlO11. The crystal structure was determined by X-ray single-crystal diffraction technique and refined to a composition of Ba5Ru1.622(8)Al1.29(1)Cu0.085(6)O11 (orthorhombic, Pnma (No. 62), a=18.615(4) Å, b=5.771(1) Å, c=11.098(2) Å, Z=4, R1=0.048, wR2=0.075). The composition of the new compound obtained from crystal structure refinement is in good agreement with the result of electron probe microanalysis using wavelength-dispersive X-ray spectroscopy. Octahedra [RuO6] are connected via faces forming pairs. The central positions of the octahedra pairs are statistically occupied by Ru and Al atoms. These octahedra pairs are interconnected to one-dimensional chains extending along [010] via tetrahedra [Al1−yCuyO4]. Isotypic Ba5Ru1.5Al1.5O11 is a further member of the solid solution with the lattice parameters a=18.6654(5) Å, b=5.7736(1) Å, c=11.0693(3) Å according to Rietveld refinement on a microcrystalline sample.  相似文献   

13.
The targeted search for suitable solid-state ionic conductors requires a certain understanding of the conduction mechanism and the correlation of the structures and the resulting properties of the material. Thus, the investigation of various ionic conductors with respect to their structural composition is crucial for the design of next-generation materials as demanded. We report here on Li5SnP3 which completes with x=0 the series Li10+4xSn2−xP6 of the fast lithium-ion conductors α- and β-Li8SnP4 (x=0.5) and Li14SnP6 (x=1). Synthesis, crystal structure determination by single-crystal and powder X-ray diffraction methods, as well as 6Li, 31P and 119Sn MAS NMR and temperature-dependent 7Li NMR spectroscopy together with electrochemical impedance studies are reported. The correlation between the ionic conductivity and the occupation of octahedral and tetrahedral sites in a close-packed array of P atoms in the series of compounds is discussed. We conclude from this series that in order to receive fast ion conductors a partial occupation of the octahedral vacancies seems to be crucial.  相似文献   

14.
Structural and magnetic properties of Mg x Zn1−x Fe2O4 powders have been studied with respect to the application for thermal cancer therapy (magnetic hyperthermia). Mg x Zn1−x Fe2O4 (x=0.1–0.5) powders with particle sizes between 5 and 8 nm were produced by citrate method. The X-ray diffraction patterns of the samples correspond to a spinel phase. The lattice constant and the volume of the elementary cell increase when x changes from 0.1 to 0.5. The FTIR-spectra ascertain the spinel phase formation. The Mossbauer studies reveal the presence of extremely small particles, which undergo superparamagnetic relaxation at room temperature. The core-shell model has been applied to explain quadruple doublets. The quadruple splitting at “shells” is bigger than those at “cores” whereas the isomer shifts remain close. Magnetic studies confirm the presence of extremely small particles that behave as superparamagnetic ones.   相似文献   

15.
16.
The crystal structure and magnetic properties of the materials FexNi8-xSi3 with 0 ≤ x ≤ 8 have been investigated to estimate any possible magnetocaloric effect and compare it to that in known magnetocalorics. Two structural ranges could be identified in this system by X-ray and neutron diffraction. The structure of the samples with 0 ≤ x ≤ 4 is related to the trigonal structure of Ni31Si12. Doubled c lattice parameters compared to the one in Ni31Si12 are observed in the samples with x = 2 and x = 3. The average structure of Fe2Ni6Si3 has been determined by X-ray single-crystal diffraction. The compounds with the compositions 5 ≤ x ≤ 8 crystallize in cubic Fe3Si-type structure. Magnetic measurements have shown that the compound Fe3Ni5Si3 displays a phase transition close to room temperature. However, its magnetocaloric effect is much smaller than the one in the promising magnetocaloric materials.  相似文献   

17.
The linear muffintin orbitals method in a tight binding approximation and extended Huckel theory are used to study the electronic structure and chemical bonding of lithium titanate (Li2TiO3) and its protonated analogs (Li1.75H0.25TiO3 and H2TiO3). The effect of protons on electron spectrum characteristics and bond strength are investigated for the monoclinic and cubic phases of lithium titanate. Phase stability is evaluated by cohesion energy calculations.  相似文献   

18.
Subsolidus region of the ternary systems Rb2MoO4-AMoO4-R2(MoO4)3, in which variable-composition phases Rb1 ? x A1 ? x R1 + x (MoO4)3 crystallizing in the monoclinic system (space group C2) are formed, was studied. Their crystallographic parameters were calculated; temperature dependences of the electrical conductivity, dielectric constant, and dielectric loss tangent were analized.  相似文献   

19.
Quasi-one-dimensional (1D) solid solutions Ti1 ? x Fe x (OCH2CH2O)2 ? x/2 (0 < x ≤ 0.1) with the structure of anatase were prepared by heating the glycolate Ti1 ? x Fe x (OCH2CH2O)2 ? x/2 in an atmosphere of air at a temperature of >450°C. The conditions of formation and the properties of the new glycolate Ti3Fe2(OCH2CH2O)9 were described. It was found that the synthesized Ti1 ? x Fe x O2 ? 2x/2 solid solutions exhibit photocatalytic activity in the reaction of hydroquinone oxidation in an aqueous solution on irradiation with UV light. A correlation between the rate of oxidation of hydroquinone and the concentration of iron in the catalyst was established. A procedure for the preparation of titanium dioxide with the structure of anatase doped with iron and carbon (Ti1 ? x Fe x O(2 ? x/2) ? yCy) and also composites on its basis, which contain an excess amount of carbon, was proposed.  相似文献   

20.
New complex phosphates of titanium, iron, and alkaline-earth metals have been synthesized. X-ray powder diffraction, differential thermal analysis (DTA), and IR spectroscopy are used to study phase formation in the series of M0.5(1+x)FexTi2?x (PO4)3 (M = Mg, Ca, Sr, Ba) phosphates. Individual compounds and solid solutions are found to crystallize in the NaZr2(PO4)3 and K2Mg2(SO4)3 structure types. Their crystal parameters are calculated. CaFeTi(PO4)3 is studied using Mössbauer spectroscopy. Its structure is refined by the Rietveld method: space group $R\bar 3$ c, Z = 6, a = 8.5172(1), Å, c = 21.7739(4) Å, V = 1367.91(4) Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号