首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-chain arylpiperazine scaffold is a versatile template to design central nervous system (CNS) drugs that target serotonin and dopamine receptors. Here we describe the synthesis and biological evaluation of ten new arylpiperazine derivatives designed to obtain an affinity profile at serotonin 5-HT1A, 5-HT2A, 5-HT7 receptor, and dopamine D2 receptor of prospective drugs to treat the core symptoms of autism spectrum disorder (ASD) or psychosis. Besides the structural features required for affinity at the target receptors, the new compounds incorporated structural fragments with antioxidant properties to counteract oxidative stress connected with ASD and psychosis. All the new compounds showed CNS MultiParameter Optimization score predictive of desirable ADMET properties and cross the blood–brain barrier. We identified compound 12a that combines an affinity profile compatible with antipsychotic activity (5-HT1A Ki = 41.5 nM, 5-HT2A Ki = 315 nM, 5-HT7 Ki = 42.5 nM, D2 Ki = 300 nM), and compound 9b that has an affinity profile consistent with studies in the context of ASD (5-HT1A Ki = 23.9 nM, 5-HT2A Ki = 39.4 nM, 5-HT7 Ki = 45.0 nM). Both compounds also had antioxidant properties. All compounds showed low in vitro metabolic stability, the only exception being compound 9b, which might be suitable for studies in vivo.  相似文献   

2.
The main oral drug absorption barriers are fluid cell membranes, and generally drugs are absorbed by a passive diffusion mechanism. On the other hand, the blood–brain barrier (BBB) is considered to be the main barrier to drug transport into the central nervous system (CNS). The BBB restricts the passive diffusion of many drugs from blood to brain. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography that uses micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug partitioning process into biological systems. In this study, relationships between the BMC retention data of a heterogeneous set of 12 drugs and their pharmacokinetics parameters (human oral drug absorption and BBB penetration ability) are studied and the predictive ability of the models is evaluated. Modeling of log k BMC of these compounds was established by multiple linear regression in two different concentrations (0.07 and 0.09 M) of sodium dodecyl sulfate (SDS). The results showed a fair correlation between human oral drug absorption and BMC retention data in 0.09 M SDS (R 2 = 0.864) and a good correlation between the blood–brain distribution coefficient and BMC retention data in 0.07 M of SDS (R 2 = 0.887). Application of the developed models to a prediction set demonstrated that the model is also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values are in good agreement with the experimental value.  相似文献   

3.
Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon’s hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3−/− mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3−/− mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases.Subject terms: Obesity, Homeostasis  相似文献   

4.
Vortioxetine is a multimodal antidepressant drug that affects several brain neurochemicals and has the potential to induce various pharmacological effects on the central nervous system. Therefore, we investigated the centrally mediated analgesic efficacy of this drug and the mechanisms underlying this effect. Analgesic activity of vortioxetine (5, 10 and 20 mg/kg, p.o.) was examined by tail-clip, tail-immersion and hot-plate tests. Motor performance of animals was evaluated using Rota-rod device. Time course measurements (30–180 min) showed that vortioxetine (10 and 20 mg/kg) administrations significantly increased the response latency, percent maximum possible effect and area under the curve values in all of the nociceptive tests. These data pointed out the analgesic effect of vortioxetine on central pathways carrying acute thermal and mechanical nociceptive stimuli. Vortioxetine did not alter the motor coordination of mice indicating that the analgesic activity of this drug was specific. In mechanistic studies, pre-treatments with p-chlorophenylalanine (serotonin-synthesis inhibitor), NAN-190 (serotonin 5-HT1A receptor antagonist), α-methyl-para-tyrosine (catecholamine-synthesis inhibitor), phentolamine (non-selective α-adrenoceptor blocker), and naloxone (non-selective opioid receptor blocker) antagonised the vortioxetine-induced analgesia. Obtained findings indicated that vortioxetine-induced analgesia is mediated by 5-HT1A serotonergic, α-adrenergic and opioidergic receptors, and contributions of central serotonergic and catecholaminergic neurotransmissions are critical for this effect.  相似文献   

5.
Fatty liver is one of the typical manifestations in homocysteinemia/homocystinuria patients and their genetic animal model, mice lacking cystathionine ??-synthase (Cbs ?/?). The vast majority of Cbs ?/? die within 4?weeks after birth via yet unknown mechanisms, whereas a small portion survive to adulthood, escaping fatty degeneration of the liver during lactation periods, through regeneration. To investigate the molecular basis of such fatty changes, we analyzed lipid components in fatty livers of 2-week-old Cbs ?/? and regenerated non-fatty livers of 8-week-old Cbs ?/? survivors using a chip-based nanoESI (electrospray ionization)-MS system, which allows quantitative detection of triacylglycerol/phospholipid molecular species. Hepatic levels of all major triacylglycerol species were much higher in Cbs ?/? than in wild-type mice at 2?weeks, although not at 8?weeks. Levels of some phospholipid species were either up- or downregulated in 2-week-old Cbs ?/?; e.g. saturated (16:0 and 18:0) or mono-unsaturated (16:1 and 18:1) fatty acids-containing phosphatidylcholine/phosphatidylethanolamine species were upregulated, while poly-unsaturated fatty acids-containing phosphatidylcholine (18:2?C18:2 and 18:2?C20:5), phosphatidylethanolamine (18:1?C20:4), and phosphatidylinositol (18:0?C20:4) were downregulated. Capillary electrophoresis-MS analysis identified high-level accumulation of S-adenosylmethionine and S-adenosylhomocysteine in fatty livers of 2-week-old Cbs ?/? but much less in non-fatty livers of 8-week-old Cbs ?/?. Although hepatic S-adenosylmethionine/S-adenosylhomocysteine ratios were comparable between 2-week-old Cbs ?/? and wild-type, global protein arginine methylation was disturbed in fatty livers of Cbs ?/?. Our results suggest that cellular signaling mediated by altered phospholipid contents might be involved in pathogenesis of fatty liver in Cbs ?/?C.  相似文献   

6.
《Tetrahedron: Asymmetry》2017,28(3):447-453
Fatty acid amide hydrolase is a key enzyme in the inactivation of the analgesic and anti-inflammatory endocannabinoid anandamide. Previously, the chiral compound 1-(1H-benzotriazol-1-yl)-3-(4-phenylphenoxy)butan-2-one was identified as a potent inhibitor of fatty acid amide hydrolase and is therefore of interest as a potential agent against pain and inflammation. Two different approaches for the enantioselective synthesis of fatty acid amide hydrolase inhibitors with a 1,3-disubstituted butan-2-one scaffold were carried out. The first one uses the chiral epoxide 2-[1-(4-phenylphenoxy)ethyl]oxirane with an (R)- or (S)-configuration at the exocyclic stereocenter as central intermediates. These substances were obtained by separation of the non-stereoselectively synthesized epoxide into its racemic diastereomers by reversed phase chromatography followed by Jacobsen’s hydrolytic kinetic resolution of each enantiomer with the (S)-configured oxirane ring. Furthermore, a chiral pool based enantioselective synthesis was developed. In that case, the starting compound for both target enantiomers was methyl 3,4-O-isopropylidene-l-threonate. In comparison to the first approach, the chiral pool synthesis consisted of more steps, but generated the enantiomers with much better enantiomeric excess. Biological evaluation showed that the (R)-enantiomer inhibits isolated fatty acid amide hydrolase with a 200-fold higher activity than the (S)-enantiomer.  相似文献   

7.
A quinoxaline scaffold exhibits various bioactivities in pharmacotherapeutic interests. In this research, twelve quinoxaline derivatives were synthesized and evaluated as new acetylcholinesterase inhibitors. We found all compounds showed potent inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 0.077 to 50.080 µM, along with promising predicted drug-likeness and blood–brain barrier (BBB) permeation. In addition, potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 14.91 to 60.95 µM was observed in some compounds. Enzyme kinetic study revealed the most potent compound (6c) as a mixed-type AChE inhibitor. No cytotoxicity from the quinoxaline derivatives was noticed in the human neuroblastoma cell line (SHSY5Y). In silico study suggested the compounds preferred the peripheral anionic site (PAS) to the catalytic anionic site (CAS), which was different from AChE inhibitors (tacrine and galanthamine). We had proposed the molecular design guided for quinoxaline derivatives targeting the PAS site. Therefore, the quinoxaline derivatives could offer the lead for the newly developed candidate as potential acetylcholinesterase inhibitors.  相似文献   

8.
The oily product ZANTHIN® consists of natural astaxanthin, which is manufactured from the microalgae Haematococcus pluvialis by supercritical CO2 extraction. An HPLC method was developed to separate all of the components of the complex astaxanthin extract using a C30 column. The separation resulted in different isomers of astaxanthin accompanied by two other carotenoids. The main component consisted of astaxanthin singly esterified with several different fatty acids. C18:3, C18:2, C18:1 and C16:0 were identified as the most commonly occurring fatty acids. Doubly esterified astaxanthin was also found, although in lower concentrations compared to singly esterified astaxanthin. After performing a detailed fatty acid analysis by GC-MS, the peaks from the extract were assigned via HPLC-MS. A trans to cis transmutation of the all-trans compound was performed by thermal treatment in order to obtain an enrichment of cis isomers as the basis for unambiguous identification via NMR experiments. The all-trans as well as the 9- and 13-cis isomers of astaxanthin were characterized in detail by UV/Vis, 1H, and 1H,1H COSY NMR spectroscopy.  相似文献   

9.
Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.  相似文献   

10.
A new metallacyclic compound (η5-cyclopentadienyl)(η5-(1-(η5-cyclopentadienyl)-2-phenyl-3-methyl-1-nickelaindenyl)nickel was synthesised and characterised. Its molecular and crystal structure was determined by X-ray measurements. It crystallises from hexane:THF mixture in the monoclinic crystal system and the P21/c space group. This is the first example of the homometallic metallametallocene of nickel. Like in nickelocene the central nickel atom has 20 valence electrons, so the compound can be regarded as the first nickelacyclic analogue of nickelocene.  相似文献   

11.
Abstract

A simple, versatile, and rapid normal-phase isocratic HLPC system is described for the analysis of the major (omega and omega-1) metabolites of C10-C18 chain length fatty acids formed upon incubation with rat liver microsomes and NADPH. Quantitation was achieved by radiometric detection. Chromatographic separation was performed by elution of the fatty acids and their omega and omega-1 metabolites from a 10μ silica column (μPorasil) with hexane:2-propanol:acetic acid (96.5:2.5:1.0). Retention times for these metabolites ranged from 10 to 13 minutes for stearic acid and from 16 to 21 minutes for capric acid. Recovery of the fatty acids and their metabolites from the column was greater than 95 percent. Relative quantitative conversion of the fatty acid substrates to omega and omega-1 metabolites was in the following order: myristic acid > capric acid=lauric acid=palmitic acid ? stearic acid. The omega products were formed preferentially over the omega-1 products of all the fatty acids except lauric acid. The method proved suitable for routine determination of NADPH-dependent fatty acid hydroxylase activities in rat liver microsomes.  相似文献   

12.
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases.  相似文献   

13.
《Tetrahedron: Asymmetry》1999,10(8):1521-1526
We performed an asymmetric synthesis of (S)-2,3-dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine dihydrochloride (TAK-218, 1), a compound used for the treatment of traumatic and ischemic central nervous system injuries. Oxirane 6, which was synthesized from (R)-2-methylglycidyl tosylate, was treated with aqueous trifluoroacetic acid to afford benzofuranmethanol 7 with inversion of stereochemistry at the stereogenic center. Compound 7 was converted into 1 with high enantiomeric excess in four steps.  相似文献   

14.
N,N′-bis(3,5-dichlorosalicylidene)-2-hydroxy-1,3-diamino-2-propan (C17H14Cl4N2O3) was synthesized and its crystal structure determined. It crystallizes in the monoclinic space group, C2/c, with a=29.734(8), b=4.541(1), c=14.694(2) Å, β=115.85(2), R(F2)=0.048 for 1704 independent reflections. The title compound has a twofold axis passing through the central C9 atom. The intramolecular hydrogen bond occurs between the pairs of atoms N1 and O1 [2.648(5) Å] and the hydrogen atom is essentially being bonded to the nitrogen atom. There is no intermolecular proximity between molecules. Conformations of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The optimized geometry of the molecular structure corresponding to the non-planar conformation is the most stable conformation in the theoretical calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded steric interactions.  相似文献   

15.
The NaPO3?Pr(PO3)3 system was studied by microdifferential thermal analysis (DTA), IR and X-ray diffraction spectroscopies. The only new compound observed in the system is NaPr(PO3)4, which melts incongruently at 1149 K. A eutectic appears at 5% Pr(PO3)3 at 901 K. The new compound NaPr(PO3)4 was characterized by means of powder X-ray diffraction and IR absorption spectroscopy. NaPr(PO3)4 is a NaLa(PO3)4 isotype; it crystallizes in the monoclinic system P21/c witha=12.328(7),b=13.130(5),c=7.231(5) Å, β=126°, 18(5),Z=4,V=945 ?3.  相似文献   

16.
Fibroblast growth factor 21 (FGF21) signaling and genetic factors are involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. However, these factors have rarely been studied in type 2 diabetes mellitus (T2D) patients from admixed populations such as in those of Brazil. Therefore, we aimed to evaluate rs738409 patanin-like phospholipase domain-containing protein (PNPLA3) and rs499765 FGF21 polymorphisms in T2D, and their association with NAFLD, liver fibrosis, and serum biomarkers (FGF21 and cytokeratin 18 levels). A total of 158 patients were included, and the frequency of NAFLD was 88.6%, which was independently associated with elevated body mass index. Significant liver fibrosis (≥F2) was detected by transient elastography (TE) in 26.8% of NAFLD patients, and was independently associated with obesity, low density lipoprotein, and gamma-glutamyl transferase (GGT). PNPLA3 GG genotype and GGT were independently associated with cirrhosis. PNPLA3 GG genotype patients had higher GGT and AST levels; PNPLA3 GG carriers had higher TE values than CG patients, and FGF21 CG genotype patients showed lower gamma-GT values than CC patients. No differences were found in serum values of FGF21 and CK18 in relation to the presence of NAFLD or liver fibrosis. The proportion of NAFLD patients with liver fibrosis was relevant in the present admixed T2D population, and was associated with PNPLA3 polymorphisms.  相似文献   

17.
18.
Background: N-octadecanoyl-5-hydroxytryptamide (C18-5HT) is an amide that can be obtained by the coupling of serotonin and octadecanoic acid. This study aims to characterize the in vivo and in vitro anti-inflammatory activity of C18-5HT. Methods: A subcutaneous air pouch model (SAP) was used. The exudates were collected from SAP after carrageenan injection to assess cell migration and inflammatory mediators production. RAW 264.7 cells were used for in vitro assays. Results: C18-5HT significantly inhibited leukocyte migration into the SAP as well as nitric oxide (NO) and cytokines production and protein extravasation. We also observed an reduction in some cytokines and an increase in IL-10 production. Assays conducted with RAW 264.7 cells indicated that C18-5HT inhibited NO and cytokine produced. Conclusions: Taken together, our data suggest that C18-5HT presents a significant effect in different cell types (leukocytes collected from exudate, mainly polumorphonuclear leukocytes and cell culture macrophages) and is a promising compound for further studies for the development of a new anti-inflammatory drug.  相似文献   

19.
Two crystal modifications of a novel complex bis(μ2-chloro)tetrachlorodicuprate(II) bis[(18-crown-6)potassium, [K{(18-crown-6)}2Cu2Cl6] were synthesized and studied by X-ray diffraction. The structures of two monoclinic modifications—Iα (space group P21/n, a = 9.053, b = 33.815, c = 13.469 Å, β = 101.29°, Z = 4) and Iβ (space group P21/c, a = 10.991, b = 8.187, c = 22.542 Å, β = 98.15°, Z = 2) were solved by the direct method and refined by the full-matrix least-squares method in anisotropic approximation to R = 0.073 (Iα) and 0.068 (Iβ) for 4883 (Iα) and 3525 (Iβ) independent reflections (CAD-4 automated diffractometer, λMoK α). The molecules of Iα and Iβ consist of the central binuclear complex anion [Cu2Cl6]2? and two peripheral host-guest cationic fragments [K(18-crown-6)]+, each linked with the [Cu2Cl6]2? anions through the K-Cl bonds. The molecule of Iα and centrosymmetric Iβ molecule have different structures, since they have different orientation of the [K(18-crown-6)]+ fragments relative to the central [Cu2Cl6]2? anion. The coordination polyhedron of the Cu2+ cation in the latter anion in Iα and Iβ is intermediate between flattened tetrahedron and square. In the [K(18-crown-6)]+ ions of Iα and Iβ, the K+ cation has the distorted hexagonal pyramidal coordination polyhedron with six O atoms of the 18-crown-6 ligand in a base and bifurcate vertex at two Cl atoms of the [Cu2Cl6]2? anion. The 18-crown-6 ligands of Iα and Iβ have standard crown conformation.  相似文献   

20.
The sodium complex with 2-(diphenylacetyl)indandione-1,3 (HL) have been synthesized and studied by X-ray diffraction analysis. Crystals of [Na4(H2O)4L4] (I) precipitated from aqueous acetone are monoclinic, Z = 2, space group P21/c, a = 12.171(1) Å, b = 10.527(1) Å, c = 29.777(2) Å, β = 97.455(1)°. The structure of compound I is based on a centrosymmetric tetranuclear [Na4O12] cage. Two central Na(2) atoms are coordinated to four O atoms of two L ligands. The central and peripheral atom polyhedrons [Na(2)O6] and [Na(1)O5] are joined by a common edge formed by two O atoms of two L ligands. Tetranuclear moieties are joined into the framework by hydrogen bonds, numerous C-H-π contacts, and π-π stacking-contacts between the conjugated and aromatic ligand systems of neighboring tetramers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号