首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The diverse utilization of pyrolysis liquid is closely related to its chemical compositions. Several factors affect PA compositions during the preparation. In this study, multivariate statistical analysis was conducted to assess PA compositions data obtained from published paper and experimental data. Results showed the chemical constituents were not significantly different in different feedstock materials. Acids and phenolics contents were 31.96% (CI: 25.30–38.62) and 26.50% (CI: 21.43–31.57), respectively, accounting for 58.46% (CI: 46.72–70.19) of the total relative contents. When pyrolysis temperatures range increased to above 350 °C, acids and ketones contents decreased by more than 5.2-fold and 1.53-fold, respectively, whereas phenolics content increased by more than 2.1-fold, and acetic acid content was the highest, reaching 34.16% (CI: 25.55–42.78). Correlation analysis demonstrated a significantly negative correlation between acids and phenolics (r2 = −0.43, p < 0.001) and significantly positive correlation between ketones and alcohols (r2 = 0.26, p < 0.05). The pyrolysis temperatures had a negative linear relationship with acids (slope = −0.07, r2 = 0.16, p < 0.001) and aldehydes (slope = −0.02, r2 = 0.09, p < 0.05) and positive linear relationship with phenolics (slope = 0.04, r2 = 0.07, p < 0.05). This study provides a theoretical reference of PA application.  相似文献   

2.
Biochar has been explored as a sorbent for contaminants, soil amendment and climate change mitigation tool through carbon sequestration. Through the optimization of the pyrolysis process, biochar can be designed with qualities to suit the intended uses. Biochar samples were prepared from four particle sizes (100–2000 µm) of three different feedstocks (oak acorn shells, jift and deseeded carob pods) at different pyrolysis temperatures (300–600 °C). The effect of these combinations on the properties of the produced biochar was studied. Biochar yield decreased with increasing pyrolysis temperature for all particle sizes of the three feedstocks. Ash content, fixed carbon, thermal stability, pH, electrical conductivity (EC), specific surface area (SSA) of biochar increased with increasing pyrolysis temperature. Volatile matter and pH value at the point of zero charge (pHpzc) of biochar decreased with increasing pyrolysis temperature. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the surface of the biochar was rich with hydroxyl, phenolic, carbonyl and aliphatic groups. Methylene blue (MB) adsorption capacity was used as an indicator of the quality of the biochar. Artificial neural networks (ANN) model was developed to predict the quality of the biochar based on operational conditions of biochar production (parent biomass type, particle size, pyrolysis temperature). The model successfully predicted the MB adsorption capacity of the biochar. The model is a very useful tool to predict the performance of biochar for water treatment purposes or assessing the general quality of a design biochar for specific application.  相似文献   

3.
Fast pyrolysis of yellow poplar wood (Liriodendron tulipifera) was performed under different temperature ranges and residence times in a fluidized bed reactor to maximize the yield of biooil. In this study, the pyrolysis temperature ranged from 400 °C to 550 °C, and the residence time of pyrolysis products was controlled between 1.2 and 7.7 s by inert nitrogen gas flow. The results revealed that the distribution of thermal degradation products (biooil, biochar, and gas) from the woody biomass was heavily influenced by pyrolysis temperature, as well as residence time. The highest yield of biooil was approximately 68.5 wt% (wet basis), with pyrolysis conditions of 500 °C and 1.9 s of residence time. Water content of the biooils produced at different temperatures was 25-30 wt%, and their higher heating values were estimated to be between 15 MJ/kg and 17 MJ/kg. Using GC/MS analysis, 30 chemical components were identified from the biooil, which were classified into 5 main groups: organic acids, aldehydes, ketones, alcohols, and phenols. In addition, biochar was produced as a co-product of fast pyrolysis of woody biomass, approximately 10 wt%, at temperatures between 450 °C and 550 °C. The physicochemical features of the biochar, including elemental analysis, higher heating values, and morphological properties by SEM, were also determined.  相似文献   

4.
Potassium (K) being the major limiting factor affecting cotton yield and quality has received massive research attention and the effects of various K fertilization techniques/organic amendments have been studied extensively. However, it is not clear whether the straw based, high pH biochar affects K availability, lint yield and quality of the cotton crop in alkaline calcareous soils. In the present study, we carried out a field experiment on a moderate to strongly calcareous silt loam soil to demonstrate the effect of straw-based biochar and potassium application levels on the growth, seed cotton yield and the lint quality. The experimental treatments comprised of two factors, A) biochar types i) Control no biochar, ii) Rice husk biochar (RHB), iii) Wheat straw biochar (WSB), and iv) Rice straw biochar (RSB), factor B) potassium application levels (i) control, no K fertilizer application, ii) K at 15 kg ha−1, and iii) K at 30 kg ha−1 (4 × 3 × 3, n = 36). Results showed that overall cotton growth and yield was significantly improved with increasing rates of potassium application. Three biochar sources affected seed cotton yield and quality with varying effects. For instance, the RSB increased plant height (11.71% to 22.47%), number of bolls per plant (0.74% to 13.75%), average boll weight (35.44% to 36.22%), the seed cotton yield was increased by 14.48% over the control when rice straw biochar was applied in combination with potassium at 30 kg ha−1. However, the ginning out turn (%) was declined with potassium application in combination with all three-biochar compared to control (no biochar addition). The WSB increased staple length and micronaire by 4.32% and 24.50% without potassium application. The potential effects of straw based biochar and potassium application on seed cotton yield and quality deserve further studies to identify the most suitable biochar as per soil chemical properties.  相似文献   

5.
The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.  相似文献   

6.
Dissolved organic matter (DOM) greatly influences the transformation of nutrients and pollutants in the environment. To investigate the effects of pyrolysis temperatures on the composition and evolution of pyroligneous acid (PA)-derived DOM, DOM solutions extracted from a series of PA derived from eucalyptus at five pyrolysis temperature ranges (240–420 °C) were analysed with Fourier transform infrared spectroscopy, gas chromatography–mass spectroscopy, and fluorescence spectroscopy. Results showed that the dissolved organic carbon content sharply increased (p < 0.05) with an increase in pyrolysis temperature. Analysis of the dissolved organic matter composition showed that humic-acid-like substances (71.34–100%) dominated and other fluorescent components (i.e., fulvic-acid-like, soluble microbial by-products, and proteinlike substances) disappeared at high temperatures (>370 °C). The results of two-dimensional correlation spectroscopic analysis suggested that with increasing pyrolysis temperatures, the humic-acid-like substances became more sensitive than other fluorescent components. This study provides valuable information on the characteristic evolution of PA-derived DOM.  相似文献   

7.
This research encompasses the use of noxious weed Parthenium hysterophorus as feedstock for pyrolysis carried out at varying temperatures of 300, 450 and 600°C. Temperature significantly affected the yield and properties of the pyrolysis products including char, syngas and bio-oil. Biochar yield decreased from 61% to 37% from 300 °C to 600 °C, whereas yield of gas and oil increased with increasing temperature. The pyrolysis products were physico-chemically characterized. In biochar, pH, conductivity, fixed carbon, ash content, bulk density and specific surface area of the biochar increased whereas cation exchange capacity, calorific value, volatile matter, hydrogen, nitrogen and oxygen content decreased with increasing temperature. Thermogravimetric analysis showed that the biochar prepared at higher temperature was more stable. Gas Chromatography-Mass Spectrometry analysis of biochar indicated the presence of alkanes, alkenes, nitriles, fatty acids, esters, amides and aromatic compounds. Number of compounds decreased with increasing temperature, but aromatic compounds increased with increasing temperature. Scanning electron micrographs of biochar prepared at different temperatures indicated micropore formation at lower temperature while increase in the size of pores and disorganization of vessels occurred at increasing temperature. The chemical composition was found to be richer at lower pyrolysis temperature. GC–MS analysis of the bio-oil indicated the presence of phenols, ketones, acids, alkanes, alkenes, nitrogenated compounds, heterocyclics and benzene derivatives.  相似文献   

8.
Rice straw is a common agricultural waste. In order to increase the added value of rice straw and improve the performance of rice straw biochar. MgO-modified biochar (MRBC) was prepared from rice straw at different temperatures, pyrolysis time and MgCl2 concentrations. The microstructure, chemical and crystal structure were studied using X-ray diffraction (XRD), a Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption desorption isotherms and Elementary Analysis (EA). The results showed that the pyrolysis temperature had significant influence on the structure and physicochemical property of MRBCs. MRBC-2 h has the richest microporous structure while MRBC-2 m has the richest mesoporous structure. The specific surface area (from 9.663 to 250.66 m2/g) and pore volume (from 0.042 to 0.158 cm3/g) of MRBCs increased as temperature rose from 300 to 600 °C. However, it was observed MgCl2 concentrations and pyrolysis time had no significant influence on pore structure of MRBCs. As pyrolysis temperature increased, pH increased and more oxygen-containing functional groups and mineral salts were formed, while MgO-modified yield, volatile matter, total content of hydrogen, oxygen, nitrogen, porosity and average pore diameter decreased. In addition, MRBCs formed at high temperature showed high C content with a low O/C and H/C ratios.  相似文献   

9.
Biochar from forest biomass and its remains has become an essential material for environmental engineering, and is used in the environment to restore or improve soil function and its fertility, where it changes the chemical, physical and biological processes. The article presents the research results on the opportunity to use the pyrolysis process to receive multifunctional biochar materials from oak biomass. It was found that biochars obtained from oak biomass at 450 and 500 °C for 10 min were rich in macronutrients. The greatest variety of the examined elements was characterized by oak-leaf pyrolysate, and high levels of Ca, Fe, K, Mg, P, S, Na were noticed. Pyrolysates from acorns were high in Fe, K, P and S. Oak bark biochars were rich in Ca, Fe, S and contained nitrogen. In addition, biomass pyrolysis has been found to improve energy parameters and does not increase the dust explosion hazard class. The oak biomass pyrolytic at 450 and 500 °C after 10 min increases its caloric content for all samples tested by at least 50%. The highest caloric value among the raw biomass tested was observed in oak bark: 19.93 MJ kg−1 and oak branches: 19.23 MJ kg−1. The mean and highest recorded Kst max were 94.75 and 94.85 bar s−1, respectively. It can be concluded that pyrolysis has the potential to add value to regionally available oak biomass. The results described in this work provide a basis for subsequent, detailed research to obtain desired knowledge about the selection of the composition, purpose, and safety rules of production, storage, transport and use of biochar materials.  相似文献   

10.
There is limited information on changes cause by nitrogen (N) fertilizers and biochar (BC) application in soil carbon and nitrogen availability, leaching and microbial activity at different growth stages in rice. This is first comprehensive study conducted in early and late seasons during 2019 to evaluate efficiency of various traditional N fertilizers (i) Urea (ii) Ammonium nitrate and (iii) Ammonium sulfate (315 kg N ha−1) with or without biochar (30 t ha−1). Results illustrated that all N fertilizers sources applied with biochar significantly increased soil organic carbon (SOC) content by an average 48.44% and 50.63%, soil total nitrogen (Nt) by 4.56% and 4.94%, reduction in total nitrogen leaching by 42.63% and 76.16%, while dissolved organic carbon leaching (DOC) augmented by 39.87% and 38.38% than non-applied treatments in early and late season, respectively. Additionally, soil microbial biomass C and N progressively increased with growth stages and was found higher than non-applied treatments in both seasons. Furthermore, combined application of N fertilizers and biochar, facilitated soil N transformation and the net concentration of NH4+–N and NO3–N was relatively higher than non-charred treatments. Similarly, in both early and late seasons, urease enzyme activity increased by an average 13.52% and 13.55%, β-glucosidase by 15.99% and 19.27% however, catalase activity decreased by 14.58% and 12.38%, correspondingly. Moreover, no significant difference (p < 0.05) was recorded among N fertilizers sources in both seasons.  相似文献   

11.
In this study, a biochar-based magnetic solid-phase microextraction method, coupled with liquid chromatography–mass spectrometry, was developed for analyzing fentanyl analogs from urine sample. Magnetic biochar was fabricated through a one-step pyrolysis carbonization and magnetization process, followed by an alkali treatment. In order to achieve desired extraction efficiency, feed stocks (wood and bamboo) and different pyrolysis temperatures (300–700°C) were optimized. The magnetic bamboo biochar pyrolyzed at 400°C was found to have the greatest potential for extraction of fentanyls, with enrichment factors ranging from 58.9 to 93.7, presumably due to H-bonding and π–π interactions between biochar and fentanyls. Various extraction parameters, such as type and volume of desorption solvent, pH, and extraction time, were optimized, respectively, to achieve the highest extraction efficiency for the target fentanyls. Under optimized conditions, the developed method was found to have detection limits of 3.0–9.4 ng/L, a linear range of 0.05–10 μg/L, good precisions (1.9–9.4% for intrabatch, 2.9–9.9% for interbatch), and satisfactory recoveries (82.0–111.3%). The developed method by using magnetic bamboo biochar as adsorbent exhibited to be an efficient and promising pretreatment procedure and could potentially be applied for drug analysis in biological samples.  相似文献   

12.
An analytical method using fractionated pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and applied for characterizing the type of interaction between 1-hydroxybenzotriazole (HBT)-mediator and pulp lignin in laccase delignification of pulp. In fractionated pyrolysis, the sample is pyrolyzed at progressively increasing temperatures in order to study particular fractions of the sample and to minimize secondary pyrolysis effects. This makes it possible to determine whether a certain pyrolysis product originates from one chemical moiety or different chemical moieties in one molecule. In the present method, samples were fractionated by thermal desorption at 200 °C followed by pyrolysis at progressively increasing temperatures from 320 to 800 °C. The products formed in each fraction were separated in a capillary GC column and detected and identified using MS. The type of interaction between HBT and pulp lignin was studied by following the formation of nitrogen-containing products during fractionated pyrolysis of a residual lignin isolated from laccase/HBT-treated oxygen-delignified softwood kraft pulp. This residual lignin was found to contain approximately 2% HBT residue. Most (87%) of this residue was covalently linked to the residual lignin. The results also strongly suggest that the HBT residue is present in two chemically different forms.  相似文献   

13.
Vacuum pyrolysis of intruder plant biomasses   总被引:1,自引:0,他引:1  
Biomass from three invasive plant species of the Western Karoo region in South Africa, namely Kraalbos, Schotzbos and Asbos, was treated by vacuum pyrolysis. The influence of temperature, pyrolysis time, pressure and initial moisture content on the bio-oil and charcoal yields were investigated. Asbos with the largest ash content, 19.9 wt.%, gave chars with an ash content between 40 wt.% and 44 wt.% making it difficult to use commercially. Vacuum pyrolysis of Kraalbos resulted in producing a biochar with a HHV of 23.0-25.5 MJ/kg and an ash content of 13-19 wt.% which compared favourable with commercial charcoal. The bio-oils from both Kraalbos and Schotzbos showed promise as potential heating oil with a HHV of 21.6-26.9 MJ/kg. The tarry phase contained a number of phenolic compounds that can be separated and shows promise as a feedstock for upgrading. Finally ageing which acts on the lignocellulosic structure of biomasses decreased the charcoal and oil yields from the vacuum pyrolysis of intruder plants.  相似文献   

14.
A novel composite, biochar derived from spent coffee grounds with immobilized TiO2 (biochar–TiO2) was prepared, characterized, and applied as an alternative, effective, and sustainable photocatalyst for degrading diclofenac from aqueous solution. Composites with different mass ratios between TiO2 and biochar were prepared by mechanical mixing and subsequent pyrolysis in an inert atmosphere of N2 at 650°C. The sample with biochar–TiO2 ratio of 1:1 presented a degradation efficiency of 90% at just 120 min versus 40% for TiO2 used as reference. This fact is associated with a set of intrinsic characteristics obtained during the formation of the composite, such as superior pore size, avoiding the recombination of the ē/h+ pair, bandgap reduction, and promotion of reactive oxygen species due to phenolic groups present on the biochar surface. The dominant reactive species involved during the photocatalytic degradation of diclofenac were h+ and OH. The diclofenac degradation pathways were determined based on the identification of intermediates and nonpurgeable organic carbon (NPOC) analysis. The novel biochar–TiO2 composite prepared in this work showed high physical–chemical stability and efficiency over five consecutive cycles of reuse, proving to be a highly promising photocatalyst for degrading diclofenac in water.  相似文献   

15.
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g−1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g−1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.  相似文献   

16.
Building polymers implemented into building panels and exterior façades have been determined as the major contributor to severe fire incidents, including the 2017 Grenfell Tower fire incident. To gain a deeper understanding of the pyrolysis process of these polymer composites, this work proposes a multi-scale modelling framework comprising of applying the kinetics parameters and detailed pyrolysis gas volatiles (parent combustion fuel and key precursor species) extracted from Molecular Dynamics models to a macro-scale Computational Fluid Dynamics fire model. The modelling framework was tested for pure and flame-retardant polyethylene systems. Based on the modelling results, the chemical distribution of the fully decomposed chemical compounds was realised for the selected polymers. Subsequently, the identified gas volatiles from solid to gas phases were applied as the parent fuel in the detailed chemical kinetics combustion model for enhanced predictions of toxic gas, charring, and smoke particulate predictions. The results demonstrate the potential application of the developed model in the simulation of different polymer materials without substantial prior knowledge of the thermal degradation properties from costly experiments.  相似文献   

17.
《中国化学快报》2020,31(10):2591-2602
Algae are potential feedstock for the production of bioenergy and valuable chemicals. After the extraction of specific value-added products, algal residues can be further converted into biogas, biofuel, and biochar through various thermochemical treatments such as conventional pyrolysis, microwave pyrolysis, hydrothermal conversion, and torrefaction. The compositions and physicochemical characteristics of algal biochar that determine the subsequent applications are comprehensively discussed. Algal biochar carbonized at high-temperature showed remarkable performance for use as supercapacitors, CO2 adsorbents, and persulfate activation, due to its graphitic carbon structure, high electron transport, and specific surface area. The algal biochar produced by pyrolysis at moderate-temperature exhibits high performance for adsorption of pollutants due to combination of miscellaneous functional groups and porous structures, whereas coal fuel can be obtained from algae via torrefaction by pyrolysis at relatively low-temperature. The aim of this review is to study the production of algal biochar in a cost-effective and environmental-friendly method and to reduce the environmental pollution associated with bioenergy generation, achieving zero emission energy production.  相似文献   

18.
The pretreatment of biomass prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass feed stocks leading to a change in the mechanism of biomass thermal decomposition. Pretreatment of feed stocks prior to fast pyrolysis provides an opportunity to produce bio-oils with varied chemical composition and physical properties. This provides the potential to vary bio-oil chemical and physical properties for specific applications. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we applied six chemical pretreatments: dilute phosphoric acid, dilute sulfuric acid, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and hydrogen peroxide. Bio-oils were produced from untreated and pretreated 10-year old pine wood feed stocks in an auger reactor at 450 °C. The bio-oils’ physical properties of pH, water content, acid value, density, viscosity, and heating value were measured. Mean molecular weights and polydispersity were determined by gel permeation chromatography. Chemical characteristics of the bio-oils were determined by gas chromatography–mass spectrometry and Fourier transform infrared techniques. Results showed that the physical and chemical characteristics of the bio-oils produced from pretreated pine wood feed stocks were influenced by the biomass pretreatments applied. These physical and chemical changes are compared and discussed in detail in the paper.  相似文献   

19.
《Analytical letters》2012,45(8):499-508
Abstract

It has been demonstrated, by operation on a series of thermosetting phenolic-asbestos composites, that pyrolysis gas chromatography may be applied as a general method for estimating polymer content in cured composite materials. A platinum filament is employed for flash pyrolysis and quantitative estimation is based on the internal standard method.  相似文献   

20.
Camellia oleifera shell is used as the feedstock to prepare the valuable products by pyrolysis using microwave heating at 400-800 °C. The yield of pyrolysis product is influenced by pyrolysis temperature, which indicates that high pyrolysis temperature promotes to generate bio-gas and restrains the production of biochar. However, pyrolysis temperature little influences the yield of bio-oil. The main compound of bio-oil is phenols, hydrocarbons, ketones, aldehydes and furans, respectively. While, bio-oil produced at 600 °C has as high as 78 % of phenols, which has potential application in chemical industries. The pyrolysis temperature has significantly influenced the composition and heating value of bio-gas. The maximum heating value of bio-gas is 12.44 MJ/Nm3, which is achieved at 600 °C. The physiochemical properties of biochar are also influenced by pyrolysis temperature. Biochar could be used as an adsorbent to adsorb Ag+ from aqueous solution, which is formed the value-added ABiochar composite by reduction. The adsorption and reduction process of Ag+ are investigated. While, ABiochar composite can be used as the catalyst for methylene blue degradation. ABiochar composite can be also used in the lithium ion battery cathode material for energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号