首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》1999,18(8-9):1141-1145
Exchange reactions of trans-[PdXPh(SbPh3)2] (1) (X=Cl or Br) with ligands L in refluxing dichloromethane give the palladium phenyl complexes [PdXPhL2] (X=Cl, L=PPh3, AsPh3, L2=2,2′-bipyridine (bipy), 4,4′-dimethyl-2,2′-bipyridine (dmbipy), 1,10-phenanthroline (phen); X=Br, L=PPh3, L2=bipy). Treatment of the complexes with bis(diphenylphosphino)methane (dppm) in refluxing dichloromethane gives [PdXPh(dppm]2. These complexes have been characterised by microanalysis, IR and 1H NMR spectroscopic data together with single crystal X-ray determinations of the phenyl palladium complexes, trans-[PdClPh(PPh3)2], [PdClPh(bipy)], [PdClPh(dppm)]2, and [PdBrPh(dppm)]2.  相似文献   

2.
Summary The preparation, structural study and chemical behaviour of new cationic, monoanionic and dianionic tetracoordinate nickel(I) complexes of the types: [NiL4][BPh4] (L=PPh3, AsPh3 or SbPh3), [PR4][NiX2L2] (X=Cl, Br or I; L=PPh3, AsPh3 or SbPh3 and [PR4]+=PPh4, Ph3PCH2Ph or Ph3PEt) and [PR4]2[NiX3L] (X=Cl, Br or I; L=PPh3 and [PR4]+=PPh4 or PPh3CH2Ph) are described.  相似文献   

3.
Chemistry of Polyfunctional Molecules. 133. X‐Ray Crystal Structural, Solid‐state 31P CP/MAS NMR, TOSS, 31P COSY NMR, and Mechanistic Contributions to the Co‐ordination Chemistry of Octacarbonyldicobalt with the Ligands Bis(diphenylphosphanyl)amine, Bis(diphenylphosphanyl)methane, and 1,1,1‐Tris(diphenylphosphanyl)ethane Co2(CO)8 reacts with bis(diphenylphosphanyl)amine, HN(PPh2)2 (Hdppa, 1 ), in two steps to afford the known compound [Co(CO)(Hdppa‐κ2P)2][Co(CO)4] · 2 THF ( 6 a · 2 THF). The intermediate [Co(CO)2(Hdppa‐κ2P) · (Hdppa‐κP)][Co(CO)4] · dioxane · n‐pentane ( 5 · dioxane · n‐pentane) was isolated for the first time and was characterized by X‐ray analysis. The cation 5 + exhibits a slightly distorted trigonal‐bipyramidal geometry. Detailed 31P‐NMR investigations (solid‐state CP/MAS NMR, TOSS, 31P‐COSY, 31P‐EXSY) showed that the additional tautomer [Co(CO)2(Hdppa‐κ2P)(Ph2P–N=P(H)Ph2‐κP)]+ ( 5 ′+) is present in solution. The tautomer equilibrium is slow in the NMR time scale. In contrast to the solid state only tetragonal pyramidal species of 5 are found in solution. At –90 °C there is slow exchange between the three diastereomeric species 5 a +– 5 c +. Compound 5 forms [Co(CO) · (Hdppa‐κ2P)2]BPh4 · THF ( 6 b · THF) in THF with NaBPh4 under CO‐Elimination. A X‐ray diffraction investigation shows that the cation 6 + consists of a slightly distorted trigonal‐bipyramidal co‐ordination polyeder. However, a distorted tetragonal‐pyramidal structure has been found for the cation 7 + of the related compound [Co(CO)(dppm)2][Co(CO)4] · 2 THF ( 7 · 2 THF; dppm = bis(diphenylphosphanyl)methane, Ph2PCH2PPh2). A comparison with the known [8] trigonal‐bipyramidal stereoisomer, ascertained for 7 + of the solvent‐free 7 , is described. In solutions of 6 a · 2 THF and 7 · 2 THF 13C{1H}‐ and 31P{1H}‐NMR spectra indicate an exchange of all CO and organophosphane molecules between cobalt(I) cation and cobalt(–I) anion. A concerted mechanism for the exchange process is discussed. CO elimination leads to discontinuance of the cyclic mechanism by forming binuclear substitution products such as the isolated Co2(CO)2 · (μ‐CO)2(μ‐dppm)2 · 0.83 THF ( 8 · 0.83 THF), which was characterized by spectroscopy and X‐ray analysis. For the dissolved [Co(CO)2CH3C(CH2PPh2)3][Co(CO)4] · 0.83 n‐pentane ( 9 a · 0.83 n‐pentane) no CO and triphos exchange processes between the cation and the anion are observed. Metathesis of 9 a · 0.83 n‐pentane with NaBPh4 yields [Co(CO)2CH3C(CH2PPh2)3]BPh4 ( 9 b ) which has been characterized by single‐crystal X‐ray analysis. The cation shows a small distorted tetragonal‐pyramidal structure.  相似文献   

4.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

5.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

6.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

7.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

8.
The complexes fac-[XMn(CO)3(dppm)], cis,cis-[XMn(CO)2(dppm)(P(OPh)3)] and trans-[XMn(CO)(dppm)2] with X = SCN or CN have been prepared from the corresponding bromocarbonyls and the salts AgX or KX, or, in the case of the di- and mono-carbonyls, from fac-[XMn(CO)3(dppm)] with X = SCN or CN by thermal or photochemical CO substitution by the ligands P(OPh)3 or dppm. The structure of fac-[SCNMn(CO)3(dppm)] has been determined by X-ray diffraction. The crystals are monoclinic, space group P21/n, and the structure has been refined to R = 0.058 for 4123 reflexions measured in the range 2 ⩽ θ ⩽ 30 at room temperature. The cis,cis-[NCMn(CO)2(dppm)(P(OPh)3)] complex can be oxidized and subsequently reduced to the isomer trans-[NCMn(CO)2(dppm)(P(OPh)3)]. All the neutral cyanide complexes react readily with MeI and KPF6 to give the corresponding methylisocyanide derivatives [Mn(CO)2(dppm)(P(OPh)3)(CNMe)]PF6 and [Mn(CO)(dppm)2(CNMe)]PF6. The stereochemistries of the compounds is discussed in relation to the 31P NMR spectra.  相似文献   

9.
Abstract

A series of complexes having the general formula, [Co(CNR)3(PR3)2]X2, X = ClO4, BF4 with CNR = CNCMe3, CNCHMe2, CNC6H11. CNCH2Ph and PR3 = PPh3, P(C6H4Me-p)3, P(C6H4OMe-p)3 has been synthesized and characterized. Synthesis can be achieved by reaction of [Co(CNR)4(AsPh3)2]X2 complexes with controlled excess of PR3 ligands, and by AgClO4/AgBF4 oxidation of the [Co(CNR)3(PR3)2]X complexes. The latter procedure is preferable. Alternate syntheses of the [Co(CNR)3(PR3)2]X complexes have also been employed. Five-coordinate Co(II) complexes have not been obtained using CNCMe3 with P(C6H4Me-p)3 ligands, CNCH2Ph with P(C6H4OMe-p)3 ligands, or CNC4H9-n with PPh3 ligands. [Co(CNC-Me3)3{P(C6H4Cl-p)3}2]ClO4 produced only [Co{CNCMe3)4H2O](ClO4)2 upon forced oxidation with excess AgClO4. [Co(CNR)3(PR3)2]X2 complexes appear to undergo varying degrees of distortion from regular (i.e., D 3h symmetry) axially-disubstituted trigonal bipyramidal coordination in the solid state, as evidenced by v(-N°C) IR patterns, but to assume regular trigonal bipyramidal coordination in solution. Effective magnetic moments indicate one-electron paramagnetism, and solution electronic spectra are compatible with trigonal bipyramidal coordination.  相似文献   

10.
《Polyhedron》1986,5(9):1423-1427
The diplatinum(I) complexes or complex ions [Pt2X2(μ-dmpm)2] (X = Cl or I), [Pt2X(PPh3)(μ-dmpm)2]+] (X = I, Br or Me), and [Pt2(PPh3)2(μ-dmpm)2]2+, where dmpm = Me2PCH2PMe2, have been prepared and characterized by 1H and 31P NMR spectroscopy. In the linear X-Pt-Pt-Y unit the trans-influence of X is felt primarily at the PtPt bond, but groups X having a very high trans-influence (X = H or Me) can also exert a weaker long-range trans-influence on the PtY bond.  相似文献   

11.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

12.
As for [RuCl2(PPh33], carbonylation of [RuCl2(PR3)3] [PR3 = P(p-tolyl)3, PEtPh2) in N,N 1-dimethylformamide (dmf) gives [Ru(CO)Cl2 (dmf) (PR3)2] (II). For PR3 = PEtPh2, rearrangement of (II) in various solvents gives inseparable mixtures (31P evidence) but for PR3 = P(p-tolyl)3 [Ru2(CO)2Cl4-{P(p-tolyl)3}3]is obtained. Reaction of [Ru(CO)Cl2 (dmf) - {P(p-tolyl)3}2] with [RuCI2{(P(p-tolyl)3}3] (1:1 mol ratio) gives [Ru2 (CO) Cl4 {P (p-tolyl)3}4] whereas reaction of [Ru (CO) Cl2 (dmf) - (PPh32] with (Rul2 {P (p-tolyl)3}3] gives [Ru2(CO)Cl4 (PPh3)2] - {P(p-tolyl)3}2] - Reaction of [RuCl2 {P(p-tolyl)3}3] with CS2 gives the related [Ru2Cl4(CS) {P(p-tolyl)3}4] and [{RuCl2(CS)}P(p-tolyl)3{2}2] whereas [RuCl2(PEtPh2)3] and CS2 produce [RuCl2(S2CPEtPh2) (PEtPh2)2]CS2 and [Ru2Cl4(CS)2(PEtph2)3].  相似文献   

13.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

14.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

15.
The synthesis and structures of the two CuI halide complexes [Cu5(dppm)(dppm?)2(OtBu)Cl2] and [Cu3(dppm)3Br2][CuBr2] (dppm = Ph2PCH2PPh2, dppm? = [Ph2PCHPPh2]?) are reported. The compounds were obtained by treating reaction mixtures of [CuOtBu] and dppm with dichloromethane or dibromomethane.  相似文献   

16.
Erratum     
The hydrido-thiocarbonyl osmium(II) complexes OsH2(CS)(PPh3)3, OsHCl(CS)(PPh3)3, OsH(OClO3)(CS)(PPh3)3, OsHCl(CS)(CNR)(PPh3)2 and [OsH(CS)(CO)(PPh3)3]+, (R = p-tolyl), have been derived from OsCl2(CS)(PPh3)3 and [OsH(CS)(CO)(PPh3)3]+, the latter can be deprotonated to give the zerolavent complex, Os(CS)(CO)(PPh3)3.  相似文献   

17.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

18.
Protonation of the cycloheptatriene complex [W(CO)36-C7H8)] with H[BF4] · Et2O in CH2Cl2 affords the cycloheptadienyl system [W(CO)35-C7H9)][BF4] (1). Complex 1 reacts with NaI to yield [WI(CO)35-C7H9)], which is a precursor to [W(CO)2(NCMe)33-C7H9)][BF4], albeit in very low yield. The dicarbonyl derivatives [W(CO)2L25-C7H9)]+ (L2=2PPh3, 4, or dppm, 5) were obtained, respectively, by H[BF4] · Et2O protonation of [W(CO)2(PPh3)(η6-C7H8)] in the presence of PPh3 and reaction of 1 with dppm. The X-ray crystal structure of 4 (as a 1/2 CH2Cl2 solvate) reveals that the two PPh3 ligands are mutually trans and are located beneath the central dienyl carbon and the centre of the edge bridge. The first examples of cyclooctadienyl tungsten complexes [WBr(CO)2(NCMe)2(1-3-η:5,6-C8H11)] (6) and [WBr(CO)2(NCMe)2(1-3-η:4,5-C8H11)] (7) were synthesised by reaction of [W(CO)3(NCR)3] (R=Me or Prn) with 3-Br-1,5-cod/6-Br-1,4-cod or 5-Br-1,3-cod/3-Br-1,4-cod (cod=cyclooctadiene), respectively. Complexes 6 and 7 are precursors to the pentahapto-bonded cyclooctadienyl tungsten species [W(CO)2(dppm)(1-3:5,6-η-C8H11)][BF4] and [W(CO)2(dppe)(1-5-η-C8H11)][BF4] · CH2Cl2.  相似文献   

19.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

20.
Neutral hydrido complexes [ML]ClH(PPh3)3 ([ML] = Ru(CO), Os(CO) and Ir(Cl)] react with thionitrosodimethylamine, Me2NNS, to give [ML]ClH-(SNNMe2)(PPh3)2 with H trans to Me2NNS, while the hydrido cations cis,trans-[[ML]H(SNNMe2)2(PPh3)2]+ are obtained from Me2NNS and [Ru(NCMe)2(CO)-(PPh3)2]+, [OsH(OH2)(CO)(PPh3)3]+ and [IrClH(NCMe)2(PPh3)2]+, respectively. The coordinatively unsaturated aryl complexes [ML′]Cl(p-tolyl)(PPh3)2 ([ML′]Ru(CO), Os(CO) and Os(CS)) coordinate one molecule of Me2NNS to give [ML′]Cl(p-tolyl)(SNNMe2)(PPh3)2, the chloride ligands of which are labile. Spectroscopic data suggest that in all these complexes the Me2NNS ligand adopts a η1(S) coordination mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号