首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A heteronuclear germanium(IV) and copper(II) complex with 1,3-diamino-2-propanoltetraacetic acid (H5Hpdta) has been synthesized for the first time. The compound has been characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The structure of the complex [(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)] · 3H2O (I) has been determined by single-crystal X-ray diffraction. The crystals of I are monoclinic, a = 1 5.327(4) Å, b = 11.626(3) Å, c =21.058(3) Å, β = 96.35(2)°, V = 3729.2(2) Å3, Z = 8, space group C2/c, R1 = 0.0551 on 3090 reflections with I > 2σ(I). The structural units of the crystal of I are binuclear complex molecules [(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)] and crystal water molecules. The germanium and copper atoms are linked by the bridging oxygen atom of the deprotonated isopropanol group of the Hpdta5? ligand (Ge-O, 1.843(3) Å; Cu-O, 2.221(3) Å). The coordination spheres of the Ge and Cu atoms contain each one nitrogen atom (Ge-N, 2.090(4) Å; Cu-N, 2.000(4) Å) and two carboxyl oxygen atoms from four acetate arms of the heptadentate Hpdta5? ligand (av. Ge-O, 1.909(3) Å; Cu-O, 1.948(3) Å). The coordination polyhedron of the Ge atom is completed to a distorted octahedron by the oxygen atoms of the terminal hydroxy group (Ge-O, 1.786(3) Å) and a water molecule (Ge-O, 1.904(3)Å). The coordination polyhedron of the copper atom is completed to a prolate tetragonal pyramid (4 + 1) by the oxygen atom of a water molecule in the equatorial position (Cu-O, 1.955(4) Å) and the bridging O(11) atom (Hpdta5?) in the apical position. Binuclear molecules are linked pairwise in a head-to-head manner via double Cu-O(2) bridges to form the centrosymmetric tetranuclear supramolecule {[(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)]}2. The coordination of the Cu atom is completed by the weak Cu-O(2A) contact (3.303 Å) to an asymmetrically elongated tetragonal bipyramid (4 + 1 +1). In the crystal, the complex molecules and crystal water molecules are combined by a system of hydrogen bonds into a three-dimensional framework.  相似文献   

2.
The hydrothermal synthesis and the structure determination from powder or single crystals X-ray diffraction of 3 new metallophosphonates are presented. Crystal data: Ga(OH)0.28F0.72PO3(CH3): P21/c (n∘ 14), a = 7.7912(7) Å, b = 7.2310(6) Å, c = 9.3114(8) Å, β = 106.873(2) °, V = 502.00(8) Å 3, Z = 4, R1(F) = 0.0409, wR2(F2) = 0.0933 for 1 266 reflections I > 2 σ (I) with 77 parameters. Ga3(OH)3F3(MePO3)2 H2N(CH2)3NH3: P-3 (No. 147), a = b = 7.2514(2) Å, c = 7.9413(2) Å, V = 361.6(3) Å3, Z = 6, RF = 7.95, RBragg = 7.18, Rwp = 17.3, Rp = 12.0. (VIVO(H2O))(CuII(H2O))O3P-CH2-PO3: P212121 (No. 19), a = 6.3884(3) Å, b = 10.7284(4) Å, c = 11.2762(5) Å, V = 772.84(6) Å3, Z = 4, R1(F) = 0.0395, wR2(F2) = 0.0861 for 2 012 reflections I > 2 σ (I) and 128 parameters.  相似文献   

3.
《Polyhedron》1986,5(10):1655-1657
(NBun4)3[Mo6O18(N2C6H5)] has been obtained by treating (NBun4)2[Mo6O19] with an equivalent amount of phenylhdyrazine in benzene. X-ray crsytallography reveals the identity of the deep red crystalline material as a polymolybdate species incorporating a coordinatively bound organo-diazenido unit. The anion [Mo6O18(N2C6H5)]3− is structurally similar to the precursor [Mo6O19]2−, with the terminally bound phenyldiazenido group replacing a terminal oxo unit of the hexamolybdate moiety. (NBun4)3[Mo6O18(N2C6H5)] crystallizes in the orthorhombic space group Pmcn with a = 17.162(3) Å, b = 17.577(3) Å, c = 23.860(4) Å, V = 7197.7(8) Å3, Z = 4, and Dc = 1.56 g cm−3 [μ = 10.60 cm−1, Mo-Kα (λ = 0.71069 Å)]. Solution and refinement based on 2118 reflections with Io ⩾ 3σ(Io gave a final reisdual of 0.080.  相似文献   

4.
《Solid State Sciences》2004,6(6):593-598
The solution-mediated syntheses and single crystal structures of C6N2H10·Zn(HPO3)2 (I) and (C6N2H8)0.5·ZnHPO3 (II) are reported. Slight variation of the synthesis conditions led to two quite different phases. I contains infinite chains of ZnO4 and HPO3 groups with the protonated organic moiety acting as a template and interacting with the chains by NH⋯O hydrogen bonds and possible CH⋯O interactions. In II, the neutral 1,4-diamino benzene molecule bonds to Zn (as a ligand) and an unusual composite, “pillared”, structure results, with the organic species bridging 63 polyhedral sheets, although NH⋯O bonds are also present. Similarities and differences to other zinc phosphites and phosphates are briefly discussed for I and II. Crystal data: C6N2H10·Zn(HPO3)2, Mr=335.48, monoclinic, C2/c (No. 15), a=17.2471 (14) Å, b=9.0720 (8) Å, c=7.6529 (6) Å, β=103.752 (2)°, V=1163.09 (7) Å3, Z=4, R(F)=0.038, wR(F2)=0.084. (C6N2H8)0.5·ZnHPO3, Mr=199.42, orthorhombic, Pbca (No. 61), a=8.0314 (16) Å, b=8.1299 (16) Å, c=18.830 (4) Å, V=1229.5 (4) Å3, Z=8, R(F)=0.026, wR(F2)=0.055.  相似文献   

5.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

6.
Interaction of salts of the cluster anions {Re [Re6Q8(CN)6]4?/3? (Q = Se, Te) with Nd salts in the presence of 2,2′-bipyridyl (Bipy) ligand brings about new coordination polymers: Pr 4 n N[{Nd(Bipy)(H2O)4} {Re6Se8(CN)6}] · 2H2O (I) (space group C2/c, a = 18.2918(16) Å, b = 14.9972(13) Å, c = 37.513(3) Å, β = 102.046(4)°, V = 10064.2(15) Å3, Z = 8), [{Nd(Bipy)2(H2O)} {Re6Se8(CN)6}] (II) (space group C2/c, a = 15.8668(3) Å, b = 13.5403(3) Å, c = 20.5189(4) Å, β = 110.135(1)°, V = 4138.89(15) Å3, Z = 4), and [{Nd(Bipy)(EtOH)(H2O)4}{Re6Te8(CN)6}] · EtOH (III) (space group $P\bar 1$ , a = 9.4733(6) Å, b = 12.5326(8) Å, c = 17.2374(11) Å, α = 96.561(2)°, β = 90.310(2)°, γ = 94.876(2)°, V = 4138.89(15) Å3, Z = 4). The compounds synthesized are characterized by single-crystal X-ray diffraction and IR methods. Compounds I and III have layered (2D) structures, compound II is a framework (3D) polymer.  相似文献   

7.
C36H24Hg2, hexabenzo[b,d,f,i,k,m][1,8] dimercuracyclotetradecene, Mr = 857.768, monoclinic, P21/n, a 17.315(3), b 16.576(2), c 10.545(6) Å, β 114.60(4)°, U 2751.65 Å3, Z = 4, Dm 2.055, Dx 2.071 g cm−3, λ(Mo-Kα) 0.71069 Å, μ 107.51 cm−1, F(000) = 1600, T 293 K; Final R = 0.041 for 4290 observed reflections with I > 3σ(I). The two CHgC angles are 175.5(3) and 175.6(4)°; average CHg distance, 2.088(13) Å.  相似文献   

8.
Reactions of a solution of AgNO3 in aqueous methanol with solutions of 1,4-diallylpiperazine (acidified with HNO3 to pH = 4) and 1-allyloxybenzotriazole in ethanol gave the crystalline silver(I) π-complexes [Ag2(C4H8N2(C3H5)2(H+)2)(H2O)2(NO3)2](NO3)2 (I) and [Ag(C6H4N3(OC3H5)(NO3))] (II). Their crystal structures were determined by X-ray diffraction. Crystals of complexes I and II are monoclinic, space group P21/c; for I: a = 7.053(3)Å, b = 9.389(3)Å, c = 15.488(4)Å, β = 91.60°, V = 1025.3(6)Å3, Z = 4; for II: a = 10.650(4)Å, b = 15.062(5)Å, c = 7.412(4)Å, β = 104.20(3)°, V = 1152.6(8)Å3, Z = 4. In both structures, the organic components act as bidentate ligands forming with AgNO3 34- and 14-membered topological rings, respectively. In complex I, the nearly tetrahedral environment of the Ag(I) atom is made up of the olefinic C=C bond, the O atoms of the nitrate anions, and the water molecule. 1-Allyloxybenzotriazole in structure II causes the deformation of the coordination polyhedron of Ag into a trigonal pyramid via inclusion of the ligand N atom in its coordination sphere. The topological units of the complexes form infinite polymer layers linked by anionic NO 3 ? bridges. In structure I, these layers are united through a system of hydrogen bonds into a three-dimensional framework.  相似文献   

9.
The syntheses and crystal structures of two one-dimensional coordination polymers, [Mn(C5HO2F6)2(C16H20N2)] n (1) and [Mn(C5HO2F6)2(C20H20N2)] n (2), are described, where C5HO2F6 ? is the hexafluoro acetylacetonate anion, C16H20N2 is 1,6-bis(4-pyridyl)-hexane, and C20H20N2 is 1,4-bis[2-(3-pyridyl)ethyl]-benzene. In both phases, the metal ion lies on a crystallographic twofold axis and is coordinated by two chelating C5HO2F6 ? anions and two bridging bipyridyl ligands to generate a cis-MnN2O4 octahedron. The bridging ligands, which are completed by crystallographic inversion symmetry in both compounds, connect the metal nodes into zigzag [20 1 ] chains in 1 and contorted [001] chains in 2. Intrachain C–H???O interactions occur in 1 but not in 2, which may be correlated with the relative orientations of the ligands. Crystal data: 1, C26H22F12MnN2O4, M r = 709.40, monoclinic, C2/c (No. 15), a = 9.3475(2) Å, b = 16.6547(3) Å, c = 18.3649(4) Å, β = 91.1135(8)°, V = 2858.50(10) Å3, Z = 4, R(F) = 0.030, w R(F 2) = 0.075. 2, C30H22F12MnN2O4, M r = 757.44, monoclinic, C2/c (No. 15), a = 19.9198(2) Å, b = 10.6459(2) Å, c = 16.8185(3) Å, β = 119.8344(8)°, V = 3093.91(9) Å3, Z = 4, R(F) = 0.032, w R(F 2) = 0.078.  相似文献   

10.
Structure solution has been carried out for a compound containing doubly charged sparfloxacindium cation, namely ((C19H24F2N4O3)[CuBr4] · H2O (I), where C19H22F2N4O3 is sparfloxacin. The crystals of I are orthorhombic with a = 14.533(4) Å, b = 12.557(4) Å, c = 29.370(9) Å, V = 2360(3) Å3, space group Pbca, Z = 8. In compound I, unlike in similar compounds of other fluoroquinolones, the second proton is attached to the sparfloxacin through the amino nitrogen atom instead of being attached through the ketone oxygen atom. This specific protonation feature of SfH is manifested in the specifics of supramolecular organization of I.  相似文献   

11.
Single crystals of diisopropylammonium dicitratoborate of the formula (C3H7)2NH2[(C6H6O7)2B] (I) were prepared and characterized by X-ray diffraction. The crystals are monoclinic, space group C2/c, a = 15.9978(5) Å, b = 11.0805(4) Å, c = 13.1872(4) Å, α = 90°, β = 103.34(1)°, γ = 90°, Z = 8, V = 2274.5 (1) Å 3, Z = 8, ρcalc = 1.440 g/cm3, 2237 reflections with I > 2σ(I); R1 = 0.0408. Structure I is built from complex spiran-type dicitratoborate anions and diisopropylammonium cations. In the crystal packing, the anions and the cations form staggered stacks linked by a system of hydrogen bonds involving three independent contacts O(N)-H...O. X-ray diffraction data for structure I were compared with those for complexes of boric and citric acids with ammonium and alkylammonium cations.  相似文献   

12.
The coordination polymers [Ag(C4H10N2)]CH3SO3 (I) and [Ag(C4H10N2)]PO2F2 (II) (C4H10N2 is piperazine (Ppz)) are synthesized, and their structures are determined. The crystals of I are monoclinic, space group P21/c, a = 6.280(1) Å, b = 11.781(1) Å, c = 12.112(1) Å, β = 97.21(1)°, V = 889.0(2) Å3, ρcalcd = 2.160 g/cm3, and Z = 4. The crystals of II are orthorhombic, space group Cmca, a = 13.039(1) Å, b = 10.450(1) Å, c = 12.837(1) Å, V = 1749.1(3) Å3, ρcalcd = 2.240 g/cm3, and Z = 8. Structure I contains cationic polymer chains [Ag(Ppz)] + . The silver atom bound to two nitrogen atoms of two Ppz ligands has an almost linear coordination mode (Ag-Naverage 2.197 Å, angle NAgN 161.2(1)°). The structure includes supramolecular layers due to weak interactions Ag…O(CH3SO3). Structure II is built of zigzag polymer chains [Ag(Ppz)]+ and tetrahedral cations PO2F 2 ? . The Ag+ ion has a linear coordination mode (Ag-N 2.220(3) Å, and the NAgN angle is 164.3(2)°). The tetrahedral anions PO2F 2 ? having weak contacts with the silver ions (Ag…O 2.630(3)Å) join the [Ag(Ppz)] + chains into wavy layers.  相似文献   

13.
The title complexes, Na[ErIII(Cydta)(H2O)2] · 5H2O (I) and Na2[SmIII(Cydta)][SmIII(Cydta)(H2O)3] · 11H2O (II) (Cydta is trans-1,2-cyclohexanediaminetetraacetic acid), are prepared and characterized using IR, elemental analyses, and single-crystal X-ray diffraction techniques. Crystal I belongs to triclinic system (space group P1), which has a mononuclear eight-coordinate slightly distorted square antiprismatic conformation. The crystal data are as follows: a = 8.371(12) Å, b = 9.952(14) Å, c = 14.74(2) Å, α = 88.32(2)°, β = 76.30(2)°, γ = 87.87(2)°, V = 1192(3) Å3, Z = 1, ρ = 1.835 g/cm3, μ = 3.612 mm?1, F(000) = 658, R = 0.0194, and wR = 0.0520 for 4130 observed reflections with I≥2σ(I). Crystal II belongs to monoclinic system (space group P21/n), which has the binuclear nine-coordinate structure with tricapped trigonal prismatic conformation for Sm(1) and the pseudomonocapped square antiprismatic conformation for Sm(2). The crystal data are as follows: a = 12.283(6) Å, b = 15.626(7) Å, c = 25.875(12) Å, β = 97.962(7)°, V = 4919(4) Å3, Z = 4, ρ = 1.717 g/cm3, μ = 2.476 mm?1, F(000) = 2536, R = 0.0781, and wR = 0.1745 for 8554 observed reflections with I ≥ 2σ(I).  相似文献   

14.
The structure of (C3H7NH3)2HgCl4 is orthorhombic, Mr = 462.6, Abma, a = 7.991(2) Å, b = 7.779(2) Å, c = 23.519(2) Å, Z = 4, V = 1462(1) Å3, Dm = 2.05(2), Dx = 2.10 mg/m−3, λ(Ag) = 0.56083 Å, μ(Ag) = 61.02 cm−1, T = 300 K, R = 0.032, R2 = 0.027 for 1188 reflections with I < 0.5σ(I). The structure is of the K2NiF4 type and consists of HgCl6 octahedra which are held together through equatorial Cl atoms forming a two-dimensional (HgCl4)2−n layer perpendicular to the c axis (HgClax is shorter than the HgCleq). The C3H7NH+3 cations inserted between these layers are disordered and joined to the layers by hydrogen bonding. The Raman spectra between 10 and 400 cm−1 have been recorded and some characteristic (HgCl4)2nn layer frequencies assigned. Thermal analysis indicates two singularities at 195 and 205 K.  相似文献   

15.
The synthesis, vibrational spectra, and X-ray diffraction analysis results for 2-(diphenylphosphinylmethoxy) aniline, 2-[(C6H5)2P(O)OCH2]C6H4NH2(I), are described. The crystals are monoclinic: a = 18.4515(17) Å, b = 10.5421(12) Å, c = 17.897(2) Å, β = 104.479(8)°, V = 3370.7(6) Å3, Z = 8, space group P21/c, R = 0.0546 for 1770 reflections with I > 2σ(I). The unit cell contains two crystallographically independent molecules Ia and Ib joined by an N-H …O hydrogen bond between a hydrogen atom of the amino group of aniline in molecule Ia (Ib) and the phosphoryl oxygen atom of molecule Ib (Ia) (O…H 2.18 and 2.19 Å, N…O, 2.979(5) and 3.000(5) Å; NHO angle, 154° and 157°).  相似文献   

16.
Arsenic 4-methoxy-8-mercaptoquinolinate As[C9H5(4-OCH3)NS]3 (I) was synthesized and studied by X-ray diffraction. Crystals are trigonal: space group R3, a = b = 13.9867(4) Å, c = 12.4991(5) Å, γ = 120°, V = 2117.58(12) Å3, ρ = 1.519 g/cm3, Z = 3. An arsenic atom in the crystal structure occupies a special position on axis 3. The structural unit of the crystal (neutral complex I) has symmetry C3. 4-Methoxy-8-mercaptoquinoline acts as a bidentate (N,S-) ligand. The coordination polyhedron of the arsenic atom is a symmetric octahedron (3S + 3N) or, with allowance for the lone electron pair, ψ-one-capped octahedron (3S + 3N + E). Bond lengths are as follows: As-S, 2.3179(7)Å; As…N 2.688(3) Å. The geometries of coordination polyhedra of arsenic atoms are compared in the crystal structures of As(C9H6NS)3, As[C9H5(2-CH3)NS]3, and As[C9H5(4-CH3)NS]3.  相似文献   

17.
A novel compound, KBi(C6H4O7) · 3.5H2O (I), has been synthesized in the Bi(NO3)2-K3(HCit) system (HCit3? is an anion of citric acid C6H8O7) at a component ratio (n) of 8 in a water-glycerol mixture, and its crystal structure has been determined. The crystals are unstable in air. The crystals are triclinic: a = 7.462 Å, b = 10.064 Å, c = 17.582 Å, α = 100.27°, β = 99.31°, γ = 105.48°, V = 1221.2 Å3, Z = 2, space group $P\bar 1$ . In the structure of I, asymmetric binuclear fragments [Bi2(Cit4?)2(H2O)2]2? are linked through inversion centers into polymeric chain anions. Ions K+ and crystal water molecules are arranged in channels between the chains. The Bi(1)...Bi(2) distances in the binuclear fragment are 4.62 Å, and the Bi(1)...Bi(1) and Bi(2)...Bi(2) distances between bismuth atoms in the chain are 5.83 and 5.95 Å, respectively. The chains are linked through bridging oxygen atoms of the ligands Cit to form layers. In the centrosymmetric four-membered chelate ring Bi2O2 formed through Bi-O(Cit) bonds, the distances Bi(1)-Bi(1) are equal to 4.55 Å, and Bi(1)-O are 2.66 and 2.84 Å. The Bi-O bond lengths in I are in the range 2.12–3.16 Å. The Cit ligands act as hexadentate chelating/bridging ligands.  相似文献   

18.
Slow evaporation of solutions of Sc and Eu nitrates with macrocyclic cavitand cucurbit[6]uril gives crystals of isostructural complexes [Sc(NO3)(H2O)4(C36H36N24O12)](NO3)2 ? 8.5H2O (space group Pna21, a = 32.0065(18) Å, b = 14.7904(8) Å, c = 11.5774(6) Å, V = 5480.6(5) Å3, Z = 4) and [Eu(NO3)(H2O)4(C36H36N24O12)](NO3)2 ? 6.75H2O (space group Pna21, a = 31.9525(17) Å, b = 14.7203(8) Å, c = 11.8592(6) Å, V = 5578.0(5) Å3, Z = 4). The metal to ligand ratio in these complexes is 1 : 1; the complexes are obtained at 0.025–0.1 mol/l concentrations of the metals in solutions. With higher lanthanide concentrations (0.7–1 mol/l), the 2 : 1 complex with cucurbit[6]uril is formed of the composition [{ Gd(NO3)(H2O)5}2(C36H36N24O12)](NO3)4 ? 6.5H2O (space group \(P\bar 1\), a = 13.3972(6) Å, b = 14.4994(5) Å, c = 18.3290(8) Å, α = 73.5610(10)°, β = 87.2590(10)°, γ = 87.5540(10)°, V = 3409.4(2) Å3, Z = 2) and isotypical complex [{Gd(NO3)(H2O)5}2{(C5H5N) ? (C36H36N24O12)}](NO3)4 ? 8H2O with a pyridine molecule inside the cucurbit[6]uril cavity (space group P21/n, a = 14.8263(6) Å, b = 13.3688(7) Å, c = 18.5970(9) Å, β = 107.5860(10)°, V = 3513.8(3) Å3, Z = 2). According to X-ray diffraction data, the metal atoms of the title complexes coordinate the O atoms in portals of cucurbit[6]uril molecules.  相似文献   

19.
Single crystals of a new compound containing triphenylguanidinium and bis(dicarbollide)nickel(III) [C(NHC6H5)3][Ni(B9C2H11)2] are obtained and analyzed by LOW-TEMPERATURE. Crystallographic data are: C23H40B18N3Ni, M = 611.87, monoclinic system, space group P21/c, unit cell parameters: a = 21.9085(5) Å, b = 19.9294(4) Å, c = 14.8721(4) Å, β = 91.4033(9)°, V = 6491,5(4) Å3, Z = 8, d x = 1.252 g/cm3, T = 100 K, F(000) = 2536, μ = 0.621 mm?1. The structure was solved by direct and Fourier methods and refined by the full matrix least squares technique in the anisotropic/isotropic (for H atoms) approximation up to the final factor R 1 = 0.053 for 10429 I hkl ≥ 2σ I (Bruker X8 APEX diffractometer, {ie547-1} radiation). It contains two independent [C(NHC6H5)3]+ cations with different conformations and two [Ni(B9C2H11)2]? anions with the same transoid conformation. Three types of weak intermolecular interactions are found: {ie547-2}; C-H…π between the H(C) atoms of cluster anions and delocalized π systems of Ph rings of cations; π…π interactions of Ph rings of cation 2 with each other.  相似文献   

20.
N,N-Diethylanilinium dicitratoborate [C6H5NH(C2H5)2][(C6H6O7)2B] (I) has been synthesized for the first time. Single crystals has been synthesized in an aqueous solution to study the crystal structure of complex I by single-crystal X-ray diffraction. Crystals are triclinic, space group Р1 a = 9.6183(2) Å, b = 10.3153(3) Å, c = 13.7364(4) Å, α = 69.0304(12)°, β = 77.0394(13)°, γ = 89.5518(10)°, V = 1236.25(6) Å3, Z = 2, ρcalcd = 1.454 g/cm3. Structural units in a crystal of complex I are large complex dicitratoborate anions with a spirane structure and N,N-diethylanilinium cations. The crystal packing is a three-dimensional framework implemented via a system of hydrogen bonds like О–Н…О, О–Н…О, ОI, and N–Н…О.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号