首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.  相似文献   

2.
Englerophytum magalismontanum, a medicinal plant with ethnopharmacology use, has a dearth of information regarding its antidiabetic properties. This study evaluated the crude methanol leaf extract of E. magalismontanum and its fractions for total phenolic content, antioxidant activity, and digestive enzymes (α-amylase and α-glucosidase) inhibitory activity using standard methods. The total phenolic content (56.53 ± 1.94 mg GAE/g dry extract) and DPPH Trolox antioxidant equivalent (TAE) (1.51 ± 0.66 µg/mL) of the methanol fraction were the highest among the fractions. The IC50 values of the methanol fraction against α-amylase (10.76 ± 1.33 µg/mL) and α-glucosidase (12.25 ± 1.05 µg/mL) activities were also high. Being the most active, the methanol fraction was subjected to bio-assay guided column chromatography-based enzyme inhibition to obtain a pure compound. The phenolic compound isolated and identified as naringenin inhibited α-amylase and α-glucosidase with IC50 of 5.81 ± 2.14 µg/mL and 4.77 ± 2.99 µg/mL, respectively. This is the first study to isolate naringenin from E. magalismontanum extract. The molecular docking and molecular dynamics studies demonstrated naringenin as a promising lead compound in comparison to acarbose for the treatment of diabetes through the inhibition of α-glucosidase activity.  相似文献   

3.
One of the effective treatments for diabetes is to reduce and delay the absorption of glucose by inhibition of α-amylase and α-glucosidase in the digestive tract. Currently, there is a great interest in natural inhibitors from various part of plants. In the present study, the phenolic compounds composition of V. opulus bark and flower, and their inhibitory effects on in vitro potato starch digestion as well as on α-amylase and α-glucosidase, have been studied. Bark and flower phenolic extracts reduced the amount of glucose released from potato starch during tree-stage simulated digestion, with IC50 value equal to 87.77 µg/mL and 148.87 µg/mL, respectively. Phenolic bark extract showed 34.9% and 38.4% more potent inhibitory activity against α-amylase and α-glucosidase, respectively, but the activity of plant extracts was lower than that of acarbose. Chlorogenic acid (27.26% of total phenolics) and (+)-catechin (30.48% of total phenolics) were the most prominent phenolics in the flower and bark extracts, respectively. Procyanidins may be responsible for the strongest V. opulus bark inhibitory activity against α-amylase, while (+)-catechin relative to α-glucosidase. This preliminary study provides the basis of further examination of the suitability of V. opulus bark compounds as components of nutraceuticals and functional foods with antidiabetic activity.  相似文献   

4.
The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synthesis of certain vital chiral drug candidates is now possible. In this research, we have synthesized 3-(((1S,3S)-3-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione (S,S,R-5) and have evaluated it potential as multi-target antidiabetic agent. The stereopure compound S,S,R-5 was synthesized with a 99:1 enantiomeric ratio. The synthesized compound gave encouraging results against all in vitro antidiabetic targets, exhibiting IC50 values of 6.28, 4.58, 0.91, and 2.36 in α-glucosidase, α-amylase, PTP1B, and DPPH targets, respectively. The molecular docking shows the binding of the compound in homology models of the respective enzymes. In conclusion, we have synthesized a new chiral molecule (S,S,R-5). The compound proved to be a potential inhibitor of the tested antidiabetic targets. With the observed results and molecular docking, it is evident that S,S,R-5 is a potential multitarget antidiabetic agent. Our study laid the baseline for the animal-based studies of this compound in antidiabetic confirmation.  相似文献   

5.
Bioactive compounds from medicinal plants are good alternative treatments for T2DM. They are also sources of lead molecules that could lead to new drug discoveries. In this study, Bauhinia strychnifolia Craib. stem, a traditional Thai medicinal plant for detoxification, was extracted into five fractions, including crude extract, BsH, BsD, BsE, and BsW, by ethanolic maceration and sequential partition with hexane, dichloromethane, ethyl acetate, and water, respectively. Among these fractions, BsE contained the highest amounts of phenolics (620.67 mg GAE/g extract) and flavonoids (131.35 mg QE/g extract). BsE exhibited the maximum inhibitory activity against α-glucosidase (IC50 1.51 ± 0.01 µg/mL) and DPP-IV (IC50 2.62 ± 0.03 µg/mL), as well as dominantly promoting glucose uptake on 3T3-L1 adipocytes. Furthermore, the four compounds isolated from the BsE fraction, namely resveratrol, epicatechin, quercetin, and gallic acid, were identified. Quercetin demonstrated the highest inhibitory capacity against α-glucosidase (IC50 6.26 ± 0.36 µM) and DPP-IV (IC50 8.25 µM). In addition, quercetin prominently enhanced the glucose uptake stimulation effect on 3T3-L1 adipocytes. Altogether, we concluded that quercetin was probably the principal bioactive compound of the B. strychnifolia stem for anti-diabetic, and the flavonoid-rich fraction may be sufficiently potent to be an alternative treatment for blood sugar control.  相似文献   

6.
Expression and purification of β-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two β-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two β-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-β-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s−1 and 0.5 ± 0.02 s−1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported β-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.  相似文献   

7.
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.  相似文献   

8.
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.  相似文献   

9.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

10.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   

11.
The Lamiaceae family is an important source of species among medicinal plants highly valued for their biological properties and numerous uses in folk medicine. Origanum is one of the main genera that belong to this family. The purpose of the study was to determine the phenolic composition of the Origanum vulgare extract and evaluate the antimicrobial, antioxidant, and inhibitory activities of this species that grows in the Andean region of the Atacama Desert. High-performance liquid chromatography was performed to determine the main phenols. Rosmarinic acid was identified as the predominant phenolic compound in this species (76.01 mg/100 g DW), followed by protocatechuic acid, which to our knowledge, no previous study reported similar concentrations in O. vulgare. The oregano extract exhibited a content of total phenolic (3948 mg GAE/100 g DW) and total flavonoid (593 mg QE/100 g DW) with a higher DPPH antioxidant activity (IC50 = 40.58 µg/mL), compared to the same species grown under other conditions. Furthermore, it was found to inhibit α-glucosidase activity with an IC50 value (7.11 mg/mL) lower than acarbose (129.32 mg/mL). Pseudomonas syringae and Pantoea agglomerans (both MIC 0.313 mg/mL and MBC 1.25 mg/mL) were the bacteria most susceptible to oregano extract with the lowest concentration necessary to inhibit bacterial growth. These results open the door for the potential use of this plant to manage chronic diseases, and they expand the knowledge of the species cultivated in arid environmental conditions.  相似文献   

12.
Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≤ 113 µg mL−1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≥87%) at 1000 µg mL−1 after 72 h, and their EC50 values were 71.4–468.1 and 31.5–299.8 µg mL−1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 µg mL−1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 µg mL−1. Stigmasterol (1), β-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-β-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides.  相似文献   

13.
The purpose of this study was to reuse cassava wastewater (CW) for scaled-up production, via the fermentation of prodigiosin (PG), and to conduct an evaluation of its bioactivities. PG was produced at the yield of high 6150 mg/L in a 14 L-bioreactor system, when the designed novel medium (7 L), containing CW and supplemented with 0.25% casein, 0.05% MgSO4, and 0.1% K2HPO4, was fermented with Serratia marcescens TNU01 at 28 °C in 8 h. The PG produced and purified in this study was assayed for some medical effects and showed moderate antioxidant, high anti-NO (anti-nitric oxide), and potential α-glucosidase inhibitory activities. Notably, PG was first reported as a novel effective α-glucosidase inhibitor with a low IC50 value of 0.0183 µg/mL. The commercial anti-diabetic drug acarbose was tested for comparison and had a lesser effect with a high IC50 value of 328.4 µg/mL, respectively. In a docking study, the cation form of PG (cation-PG) was found to bind to the enzyme α-glucosidase by interacting with two prominent amino acids, ASP568 and PHE601, at the binding site on the target enzyme, creating six linkages and showing a better binding energy score (−14.6 kcal/mol) than acarbose (−10.5 kcal/mol). The results of this work suggest that cassava wastewater can serve as a low-cost raw material for the effective production of PG, a potential antidiabetic drug candidate.  相似文献   

14.
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.  相似文献   

15.
Three new polycyclic phenol derivatives, 2-acetyl-4-hydroxy-6H-furo [2,3-g]chromen-6-one (1), 2-(1′,2′-dihydroxypropan-2′-yl)-4-hydroxy-6H-furo [2,3-g][1]benzopyran-6-one (2) and 3,8,10-trihydroxy-4,9-dimethoxy-6H-benzo[c]chromen-6-one (8), along with seven known ones (3–7, 9 and 10) were isolated for the first time from the leaves of Spermacoce latifolia. Their structures were determined by spectroscopic analysis and comparison with literature-reported data. These compounds were tested for their in vitro antibacterial activity against four Gram-(+) bacteria: Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC), Bacillus subtilis (BS), and the Gram-(−) bacterium Escherichia coli. Compounds 1, 2, 5 and 8 showed antibacterial activity toward SA, BC and BS with MIC values ranging from 7.8 to 62.5 µg/mL, but they were inactive to MRSA. Compound 4 not only showed the best antibacterial activity against SA, BC and BS, but it further displayed significant antibacterial activity against MRSA (MIC 1.95 µg/mL) even stronger than vancomycin (MIC 3.9 µg/mL). No compounds showed inhibitory activity toward E. coli. Further bioassay indicated that compounds 1, 4, 5, 6, 8 and 9 showed in vitro α-glucosidase inhibitory activity, among which compound 9 displayed the best α-glucosidase inhibitory activity with IC50 value (0.026 mM) about 15-fold stronger than the reference compound acarbose (IC50 0.408 mM). These results suggested that compounds 4, 8 and 9 were potentially highly valuable compounds worthy of consideration to be further developed as an effective anti-MRSA agent or effective α-glucosidase inhibitors, respectively. In addition, the obtained data also supported that S. latifolia was rich in structurally diverse bioactive compounds worthy of further investigation, at least in searching for potential antibiotics and α-glucosidase inhibitors.  相似文献   

16.
Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = −7.2 to −9.6 kcal/mol (compared with acarbose ΔG = −6.1 kcal/mol) for α-amylase, and ΔG = −7.3 to −9.0 kcal/mol (compared with acarbose ΔG = −6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.  相似文献   

17.
Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.  相似文献   

18.
The main objective of the current study was the extraction, purification, and enzymatic characterization of a potent proteinaceous amylase inhibitor from Moringa oleifera. The antimicrobial potential and insecticide effects against C. maculates insect larvae were also studied. The α-amylase inhibitor was extracted in methanol (with an inhibitory activity of 65.6% ± 4.93). Afterwards, the inhibitor αAI.Mol was purified after a heat treatment at 70 °C for 15 min followed by one chromatographic step of Sephadex G-50. An apparent molecular weight of 25 kDa was analyzed, and the N-terminal sequence showed the highest identity level (89%) with the monomeric α-amylase inhibitor from Triticum dicoccoides. αAI.Mol was found to tolerate pH values ranging from 5.0 to 11.0 and showed maximal activity at pH 9.0. Thermal stability was remarkably important, since the inhibitory activity was maintained at 55% after 1 h of incubation at 70 °C and at 53% after an incubation of 45 min at 80 °C. The potency of the current purified inhibitor against amylases from different origins indicates that αAI.Mol seems to possess the highest affinity toward human salivary α-amylase (90% inhibitory activity), followed by the α-amylase of insects Callosobruchus maculatus and Tribolium confusum (71% and 61%, respectively). The kinetic parameters were also calculated, and the Kmax and Vmax of the digestive amylase were estimated at 185 (mmol/min/mg) and 0.13 mM, respectively. The inhibitor possesses a strong bactericidal effect against Gram+ and Gram- strains, and the MIC values were >1 against B. cereus but >6 against E. coli. Interestingly, the rates of survival and pupation of C. maculates insect larvae were remarkably affected by the purified αAI.Mol from Moringa oleifera.  相似文献   

19.
Antioxidant activity associated with green rooibos infusions is attributed to the activity of polyphenols, particularly aspalathin and nothofagin. This study aimed to optimise β-cyclodextrin (β-CD)-assisted extraction of crude green rooibos (CGRE) via total polyphenolic content (TPC) and antioxidant activity assays. Response surface methodology (RSM) permitted optimisation of β-CD concentration (0–15 mM), temperature (40–90 °C) and time (15–60 min). Optimal extraction conditions were: 15 mM β-CD: 40 °C: 60 min with a desirability of 0.985 yielding TPC of 398.25 mg GAE·g−1, metal chelation (MTC) of 93%, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging of 1689.7 µmol TE·g−1, ferric reducing antioxidant power (FRAP) of 2097.53 µmol AAE·g−1 and oxygen radical absorbance capacity (ORAC) of 11,162.82 TE·g−1. Aspalathin, hyperoside and orientin were the major flavonoids, with quercetin, luteolin and chrysoeriol detected in trace quantities. Differences (p < 0.05) between aqueous and β-CD assisted CGRE was only observed for aspalathin reporting the highest content of 172.25 mg·g−1 of dry matter for extracts produced at optimal extraction conditions. Positive, strong correlations between TPC and antioxidant assays were observed and exhibited regression coefficient (R2) between 0.929–0.978 at p < 0.001. These results demonstrated the capacity of β-CD in increasing polyphenol content of green rooibos.  相似文献   

20.
The present paper reports the determination of the activation energies and the optimum temperatures of starch hydrolysis by porcine pancreas α-amylase. The parameters were estimated based on the literature data on the activity curves versus temperature for starch hydrolysis by α-amylase from porcine pancreas. It was assumed that both the hydrolysis reaction process and the deactivation process of α-amylase were first-order reactions by the enzyme concentration. A mathematical model describing the effect of temperature on porcine pancreas α-amylase activity was used. The determine deactivation energies Ea were from 19.82 ± 7.22 kJ/mol to 128.80 ± 9.27 kJ/mol, the obtained optimum temperatures Topt were in the range from 311.06 ± 1.10 K to 326.52 ± 1.75 K. In turn, the values of deactivation energies Ed has been noted in the range from 123.57 ± 14.17 kJ/mol to 209.37 ± 5.17 kJ/mol. The present study is related to the starch hydrolysis by α-amylase. In the industry, the obtained results the values Ea, Ed, Topt can be used to design and optimize starch hydrolysis by α-amylase porcine pancreas. The obtained results might also find application in research on the pharmaceutical preparations used to treat pancreatic insufficiency or prognosis of pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号