首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Combating multiple drug resistance necessitates the delivery of drug molecules at the cellular level. Novel drug delivery formulations have made it possible to improve the therapeutic effects of drugs and have opened up new possibilities for research. Solid lipid nanoparticles (SLNs), a class of colloidal drug carriers made of lipids, have emerged as potentially effective drug delivery systems. The use of SLNs is associated with numerous advantages such as low toxicity, high bioavailability of drugs, versatility in the incorporation of hydrophilic and lipophilic drugs, and the potential for production of large quantities of the carrier systems. The SLNs and nanostructured lipid carriers (NLCs) are the two most frequently used types of nanoparticles. These types of nanoparticles can be adjusted to deliver medications in specific dosages to specific tissues, while minimizing leakage and binding to non-target tissues.  相似文献   

2.
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) coated with human serum albumin (HSA) were fabricated for formulating nevirapine (NVP). Here, NLCs contained low-melting-point oleic acid (OA) in the internal lipid phase. The results revealed that the two nanoparticles were uniformly distributed with the average diameter ranging from 145 to 180 nm. The surface HSA neutralized the positive charge of dimethyldioctadecyl ammonium bromide (DODAB) on SLNs and NLCs and reduced their zeta potential. In a fixed ratio of solid lipids, SLNs entrapped more NVP than NLCs. The incorporation of OA also reduced the thermal resistance of NLCs and accelerated the release of NVP from the nanocarriers. When incubated with DODAB-stabilized SLNs, the viability of human brain-microvascular endothelial cells (HBMECs) reduced. However, the surface HSA increased the viability of HBMECs about 10% when the concentration of SLNs was higher than 0.8 mg/mL. HSA-grafted SLNs and NLCs can be effective formulations in the delivery of NVP for viral therapy.  相似文献   

3.
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.  相似文献   

4.
Tryptanthrin is an ancient medicine which recently was also found to have a function of downregulating multidrug resistance (MDR). However, tryptanthrin is insoluble in water, which limits its availability for delivery into cancer cells. There is a need to improve delivery systems to increase the inhibition of MDR. The aim of this study was to employ nanoparticles encapsulating tryptanthrin to improve the delivery and promote the sustained release of this drug. The approach was to encapsulate tryptanthrin in various nanoparticles, including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid emulsions (LEs). We compared the particle size and zeta potential of these nanoparticles, and evaluated the partitioning behavior of tryptanthrin in them. We also determined the release kinetics of tryptanthrin from these nanoparticles. Moreover, cellular cytotoxicity toward and uptake of tryptanthrin-loaded nanoparticles by human breast cancer cells were determined. We found that the mean particle size of NLCs was lower, and the partition coefficient was higher than those of SLNs, and an increased tryptanthrin release rate was found with the NLC delivery system. NLCs achieved the sustained release of tryptanthrin without an initial burst. In particular, the NLC-C formulation, composed of a mixture of Compritol and squalene as the core materials, showed the highest release rate and cytotoxic effect. Confocal laser scanning microscopic images confirmed drug internalization into cells which enhanced the endocytosis of the particles. These results suggested that NLCs can potentially be exploited as a drug carrier for topical or intravenous use in the future.  相似文献   

5.
Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.  相似文献   

6.
Capsaicin is an active compound in chili peppers (Capsicum chinense) that has been approved for chronic pain treatment. The topical application of high-strength capsaicin has been proven to reduce pain; however, skin irritation is a major drawback. The aim of this study was to investigate an appropriate and scalable technique for preparing nanostructured lipid carriers (NLCs) containing 0.25% capsaicin from capsicum oleoresin (NLC_C) and to evaluate the irritation of human skin by chili-extract-loaded NLCs incorporated in a gel formulation (Gel NLC_C). High-shear homogenization with high intensity (10,000 rpm) was selected to create uniform nanoparticles with a size range from 106 to 156 nm. Both the NLC_C and Gel NLC_C formulations expressed greater physical and chemical stabilities than the free chili formulation. Release and porcine biopsy studies revealed the sustained drug release and significant permeation of the NLCs through the outer skin layer, distributing in the dermis better than the free compounds. Finally, the alleviation of irritation and the decrease in uncomfortable feelings following the application of the Gel NLC_C formulation were compared to the effects from a chili gel and a commercial product in thirty healthy volunteers. The chili-extract-loaded NLCs were shown to be applicable for the transdermal delivery of capsaicin whilst minimizing skin irritation, the major noncompliance cause of patients.  相似文献   

7.
Solid lipid nanoparticles (SLNs) have been synthesized as potential drug delivery systems. They are classified as solid lipid nanocarriers that can successfully carry both hydrophilic and hydrophobic drugs. SLNs are based on a biocompatible lipid matrix that is enzymatically degraded into natural components found in the human body. Solid lipid nanoparticles are suitable for the incorporation of hydrophobic active ingredients such as curcumin. The study included the optimization of lipid nanoparticle composition, incorporation of the active compound (curcumin), a stability evaluation of the obtained nanocarriers and characterization of their lipid matrix. Through process optimization, a dispersion of solid lipid nanoparticles (solid lipid:surfactant—2:1.25 weight ratio) predisposed to the incorporation of curcumin was developed. The encapsulation efficiency of the active ingredient was determined to be 99.80%. In stability studies, it was found that the most suitable conditions for conducting high-pressure homogenization are 300 bar pressure, three cycles and a closed-loop system. This yields the required values of the physicochemical parameters (a particle size within a 200–450 nm range; a polydispersity index of <30%; and a zeta potential of about |±30 mV|). In this work, closed-loop high-pressure homogenization was used for the first time and compared to the currently preferred open-loop method.  相似文献   

8.
A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti‐inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems.  相似文献   

9.
《Arabian Journal of Chemistry》2020,13(11):7909-7920
Tamoxifen (TAM) and Sulphoraphane (SFN) are well-known anti-estrogen drugs used for the treatment of breast cancer. Due to their synergistic therapeutic potential, their combination is preferred as it helps to minimize the drug-related toxicities and enhances therapeutic efficacy. A simple, robust and fast simultaneous reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed as well validated for the analysis of both the drugs based on their particular wavelength. The separation was performed on C18 analytical column with dimensions of 4.6 × 250 mm, 5 μm using mobile phase methanol: water (pH 3.5) in the ratio 70:30 and flow rate of 0.8 min/mL. Box-Behnken experimental design was used to optimized these independent variables and analyze their effect on the response variables like retention time (RT), no. of theoretical plates and tailing factor of both analytes. Method validation was carried out for establishing the specificity, linearity range, accuracy, sensitivity, robustness, precision and ruggedness. The method applicability was evaluated on different nanoformulations, i.e., solid lipid nanoparticles (SLNs), liposomes (LIPO), nanostructured lipid carriers (NLCs). The peaks of the analyte were found to be well resolved and two distinct RT were recorded for TAM and SFN. Calibration curves were found to be linear for TAM and SFN over concentration range of 6–24 μg/mL. All method validation criteria were within the range of acceptance. Relative standard deviation (%RSD) was observed to be <2% for inter- and intra-day precision. The application of developed method for estimation of drugs from the nanoformulations was suitabile for in vitro as well as in vivo studies.  相似文献   

10.
The aim of the present study was to develop controlled drug delivery systems based on nanotechnology. Two different nanocarriers were selected, chitosan-alginate nanoparticles as hydrophilic and solid lipid nanoparticles as lipophilic carriers. Nanoparticles were prepared and characterized by evaluating particle size, zeta potential, SEM pictures, DSC thermograms, percentage of drug loading efficiency, and drug release profile. The particle size of SLNs and Chi/Alg nanoparticles was 291 ± 5 and 520 ± 16. Drug loading efficiency of Chi/Alg and SLN particles were 68.98 ± 5.5% and 88 ± 4.5%. The drug release was sustained with chitosan-alginate system for about 45 hours whereas for SLNs >98% of the drug was released in 2 hours. Release profile did not change significantly after freeze drying of particles using cryoprotector. Results suggest that under in vitro condition chitosan/alginate systems can act as promising carriers for ciprofloxacin and may be used as an alternative system in sustained delivery of ciprofloxacin.  相似文献   

11.
The oxidative stability of encapsulated product is a critical parameter in many products from food to pharmaceutical to cosmetic industries. The overall objective of this study was to correlate differences in the distribution pattern of encapsulated material within solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) with the relative susceptibility of these materials to undergo oxidation. The distribution of an encapsulated lipid soluble dye (Nile Red) in SLNs and NLCs was quantitatively measured using fluorescence imaging. The relative susceptibility of the encapsulated material to react with free radicals generated in the aqueous phase and oxygen from the ambient environment was measured using peroxyl radical and oxygen sensitive fluorescent dyes encapsulated in the lipid phase of colloidal particles respectively. Imaging measurements demonstrate a significant exclusion of the encapsulated dye molecules from the lipid core of SLNs as compared to NLCs. Imaging results also showed significant differences in the intraparticle distribution of encapsulated dye between NLCs containing 1 and 10% liquid lipid. On the basis of these differences in distribution, we hypothesized that the relative susceptibility of encapsulated material to peroxyl radicals and oxygen would be in the order SLNs > 1% NLC > 10% NLC. Measurement of relative susceptibility of peroxyl radical sensitive dye encapsulated in SLNs and NLCs to peroxyl radicals generated in the aqueous phase validated the proposed hypotheses. However, the susceptibility of encapsulated oxygen sensitive dye to ambient oxygen was not significantly different between SLNs and NLCs. The results of this study demonstrate that difference in distribution pattern of encapsulated material within colloidal particles can significantly influence the susceptibility of encapsulated material to react with free radicals. Overall, this study demonstrates a comprehensive approach to characterize the susceptibility of encapsulated materials in colloidal particles to oxidation processes.  相似文献   

12.
The aim of this study was to develop some sunscreen formulations able to maintain their photoprotection when exposed to UV radiation. In this context, the influence of the antioxidant α-tocopherol on the photostability of lipid-based nanoparticles, namely solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), encapsulated with a UVA filter, has been investigated. The nanoparticles co-encapsulated with both actives exhibited dimensions smaller than 200 nm and zeta potentials of –45 mV. The photoprotection of the creams based on lipid nanoparticles was evaluated in terms of two protection factors, SPF and erythemal UVA–PF. By exposing the creams to UV radiation, it was observed that tocopherol results in obtaining quite stable formulations, but it does not improve the overall photoprotection much. However, by adding the antioxidant to the formulation confers a double action: protection of the skin against reactive oxygen species and the photostabilization of the UVA filter into lipid nanoparticles.  相似文献   

13.
The current research aimed to fabricate ondansetron nanostructured lipid carriers (OND-NLCs) and incorporate them into a suppository base to manage chemotherapy-induced vomiting and nausea, which offer the advantage of both rapid onset and prolonged release. NLCs were fabricated by adopting the solvent diffusion method. The binary lipid mixture of oleic acid (liquid lipid) and lauric acid (solid lipid) were prepared in distinct ratios. The NLCs were characterized concerning the surface charge, size, drug encapsulation efficiency, and surface morphology. In addition, the influence of surfactant, co-surfactant, and lipid on entrapment efficiency and particle size was investigated. Phosphate buffer having pH 7.4 is used for evaluating in vitro drug release by utilizing a dialysis membrane. Various kinetics models were used to estimate the drug release kinetics of fabricated nanostructured lipid carriers. The particle size of the NLCs was calculated between 101 and 378 nm with negative zeta potential on the NLC’s surface. The entrapment efficiency was found between 68 and 87%. Scanning Electron Microscopic analysis showed the spherical shape of nanostructured lipid carriers. The dissolution profile of the ondansetron-loaded NLC suppository depicts biphasic behavior of firstly burst release then slow release was observed. The diffusion controlled release was evident from kinetic modeling. The succeeding step comprehended the fabrication and characterization of NLC-based suppositories utilizing NLC formulations that demonstrated the combined advantage of rapid onset, prolonged release, and better in vivo bioavailability as compared to control suppository.  相似文献   

14.
The coencapsulation of two UV filters, butyl‐methoxydibenzoylmethane (BMDBM) and octocrylene (OCT), into lipid nanocarriers was explored to develop stable cosmetic formulations with broad‐spectrum photoprotection and slow release properties. Different types of nanocarriers in various concentrations of the two UV filters were tested to find the combination with the best absorption and release properties. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been the two types of lipid nanocarriers used. The NLCs were based on either medium chain triglycerides (MCT) or squalene (Sq). The following physicochemical properties of the nanocarriers have been evaluated: particle size, morphology, zeta potential (ZP), entrapment efficiency, loading capacity, and thermal behavior. The nanocarriers have been formulated into creams containing low amounts of UV filters (2.5% BMDBM and 1% OCT). The best photoprotection results were obtained with the cream based on NLCs prepared with MCT, having a sun protection factor (SPF) of 17.2 and an erythemal UVA protection factor (EUVA–PF) of 50.8. The photostability of the encapsulated BMDBM filter was confirmed by subjecting the nanocarriers‐based creams to in vitro irradiation. The prolonged UV‐protection efficacy was coupled with a slow in vitro release of the synthetic UV filters, which followed the Higuchi release model.  相似文献   

15.
Advanced hybrid component development in nanotechnology provides superior functionality in the application of scientific knowledge for the drug delivery industry. The purpose of this paper is to review important nanohybrid perspectives in drug delivery between nanostructured lipid carriers (NLC) and hydrogel systems. The hybrid system may result in the enhancement of each component’s synergistic properties in the mechanical strength of the hydrogel and concomitantly decrease aggregation of the NLC. The significant progress in nanostructured lipid carriers–hydrogels is reviewed here, with an emphasis on their preparation, potential applications, advantages, and underlying issues associated with these exciting materials.  相似文献   

16.
Ideally, antineoplastic treatment aims to selectively eradicate cancer cells without causing systemic toxicity. A great number of antineoplastic agents (AAs) are available nowadays, with well-defined therapeutic protocols. The poor bioavailability, non-selective action, high systemic toxicity, and lack of effectiveness of most AAs have stimulated the search for novel chemotherapy protocols, including technological approaches that provide drug delivery systems (DDS) for gold standard medicines. Nanostructured lipid carriers (NLC) are DDS that contain a core of solid and lipid liquids stabilised by surfactants. NLC have high upload capacity for lipophilic drugs, such as the majority of AAs. These nanoparticles can be prepared with a diversity of biocompatible (synthetic or natural) lipid blends, administered by different routes and functionalised for targeting purposes. This review focused on the research carried out from 2000 to now, regarding NLC formulations for AAs (antimetabolites, antimitotics, alkylating agents, and antibiotics) encapsulation, with special emphasis on studies carried out in vivo. NLC systems for codelivery of AAs were also considered, as well as those for non-classical drugs and therapies (natural products and photosensitisers). NLC have emerged as powerful DDS to improve the bioavailability, targeting and efficacy of antineoplastics, while decreasing their toxic effect in the treatment of different types of cancer.  相似文献   

17.
Nutraceuticals possess several health benefits and functions; however, most nutraceuticals are prone to degradation in the gastrointestinal environment and have poor bioavailability. Application of a novel carrier system is of increasing importance to overcome obstacles and provide efficient applicability. Lipid-based nanocarriers provide a large surface-to-mass ratio, enhanced intestinal absorption by solubilization in the intestinal milieu, intestinal lymphatic transport, and altering enterocyte-based transport. A critical overview of the current limitation, preparation, and application of lipid-based nanocarriers (liposomes and niosomes) and lipid nanoparticles (SLNs and NLCs) is discussed. Physical and gastrointestinal stability and bioavailability of nanoencapsulated nutraceuticals are considered as well.  相似文献   

18.
Terpenes are a group of phytocompounds that have been used in medicine for decades owing to their significant role in human health. So far, they have been examined for therapeutic purposes as antibacterial, anti-inflammatory, antitumoral agents, and the clinical potential of this class of compounds has been increasing continuously as a source of pharmacologically interesting agents also in relation to topical administration. Major difficulties in achieving sustained delivery of terpenes to the skin are connected with their low solubility and stability, as well as poor cell penetration. In order to overcome these disadvantages, new delivery technologies based on nanostructures are proposed to improve bioavailability and allow controlled release. This review highlights the potential properties of terpenes loaded in several types of lipid-based nanocarriers (liposomes, solid lipid nanoparticles, and nanostructured lipid carriers) used to overcome free terpenes’ form limitations and potentiate their therapeutic properties for topical administration.  相似文献   

19.
Solid lipid nanoparticles (SLNs) have the potential to enhance the systemic availability of an active pharmaceutical ingredient (API) or reduce its toxicity through uptake of the SLNs from the gastrointestinal tract or controlled release of the API, respectively. In both aspects, the responses of the lipid matrix to external challenges is crucial. Here, we evaluate the effects of lyophilization on key responses of 1:1 beeswax–theobroma oil matrix SLNs using three model drugs: amphotericin B (AMB), paracetamol (PAR), and sulfasalazine (SSZ). Fresh SLNs were stable with sizes ranging between 206.5–236.9 nm. Lyophilization and storage for 24 months (4–8 °C) caused a 1.6- and 1.5-fold increase in size, respectively, in all three SLNs. Zeta potential was >60 mV in fresh, stored, and lyophilized SLNs, indicating good colloidal stability. Drug release was not significantly affected by lyophilization up to 8 h. Drug release percentages at end time were 11.8 ± 0.4, 65.9 ± 0.04, and 31.4 ± 1.95% from fresh AMB-SLNs, PAR-SLNs, and SSZ-SLNs, respectively, and 11.4 ± 0.4, 76.04 ± 0.21, and 31.6 ± 0.33% from lyophilized SLNs, respectively. Thus, rate of release is dependent on API solubility (AMB < SSZ < PAR). Drug release from each matrix followed the Higuchi model and was not affected by lyophilization. The above SLNs show potential for use in delivering hydrophilic and lipophilic drugs.  相似文献   

20.
A novel formulation based on nanostructured lipid carriers (NLCs) was developed to increase solubility and intestinal absorption of khellin. K-NLCs were prepared with stearic acid, hempseed oil, Brij S20, and Labrafil M 1944 CS, using the emulsification-ultrasonication method. Developed nanoparticles were chemically and physically characterized by liquid chromatography, light scattering techniques, and electron microscopy. The size, about 200 nm, was optimal for oral delivery, and the polydispersity index (around 0.26), indicated high sample homogeneity. Additionally, K-NLCs showed a spherical morphology without aggregation by microscopic analysis. The encapsulation efficiency of khellin was about 55%. In vitro release studies were carried out in media with different pH to mimic physiological conditions. K-NLCs were found to be physically stable in the simulated gastric and intestinal fluids, and they preserved about 70% of khellin after 6 h incubation. K-NLCs were also successfully lyophilized testing different lyoprotectants, and obtained freeze-dried K-NLCs demonstrated good shelf life over a month. Lastly, permeability studies on Caco-2 cells were performed to predict khellin passive diffusion across the intestinal epithelium, demonstrating that nanoparticles increased khellin permeability by more than two orders of magnitude. Accordingly, developed NLCs loaded with khellin represent a versatile formulation with good biopharmaceutical properties for oral administration, possibly enhancing khellin’s bioavailability and therapeutic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号