首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.  相似文献   

2.
3.
Abstract

Seven-coordinate complexes of molybdenum(II) and tungsten(II) have become increasingly important as homogeneous catalysts. For example, the complexes [MX2(CO)3L2] (M = Mo and W; X = Cl and Br; L = PPh3 and AsPh3) have been shown to be catalysts for the ring-opening polymerisation of norbornene.1 Although a wide variety of complexes of the type [MX2(CO)3L2] (M = Mo and W; X = Cl, Br and I; L = nitrogen, phosphorus, arsenic and antimony donor ligands)2 have been reported, until now no examples of the mixed complexes [MX2(CO)3(py)L] have been prepared. In this communication we wish to describe the synthesis of the new mixed pyridine/L compounds [MI2(CO)3(py)L] (M = Mo and W; L = PPh3, AsPh3 and SbPh3).  相似文献   

4.
5.
The reaction of (μ-H)Os3μ-O2CC5H4Mn(CO)3(CO)10 with PPh3 in the presence of Me3NO gave mono- and disubstituted heterometallic complexes (μ-H)Os3μ-O2CC5H4Mn(CO)3(PPh3)(CO)9 and (μ-H)Os3μ-O2CC5H4Mn(CO)3 (PPh3)2(CO)8. Crystal structure determination was performed for three isomeric cluster complexes (μ-H)Os3μ-O2CC5H4Mn(CO)3(PPh3)2(CO)8, which are both geometrical and conformational isomers differing in color. The geometrical isomerism is due to the attachment of the PPh3 group at different vertices of the Os3 triangle relative to the O2CC5H4Mn(CO)3 bridging ligand. The conform ational isomerism implies that the molecules have the same arrangement of ligands and differ only in the values of bond angles between the planar fragments of the clusters.  相似文献   

6.
《Polyhedron》1987,6(2):261-267
A new, high-yield method has been developed for the preparation of MO(CO)2I22-dppm)(η1-dppm). The title compound was prepared by the reaction of [Et4N][Mo(CO)4I3] with dppm in benzene in 95% yield. It has been characterized by a single-crystal X-ray study. The crystallographic data are as follows: monoclinic, space group P21/n, a = 19.023(4) Å, b = 14.439(3) Å, c = 20.141(5) Å, β = 100.45(2)°, V = 5440(2) Å3 Z = 4. The geometry around the central metal atom could be considered as either a distortion from a capped octahedron with a carbonyl in a capping position or from a trigonal prism with the iodine capping a rectangular face. The solution behavior of Mo(CO)2I2(dppm)2 was examined with 31P NMR, which showed it to be fluxional.  相似文献   

7.
Reaction of the activated cluster [Os3(CO)11(CNMe)] with primary arsine AsH3 forms the arsinidine compound [H2Os33-AsH)(CO)11] (1a, 1b), which on further reaction with [Os3(CO)11(NCMe)] yields [(CO)11Os3As(Os3(CO)9H3)] (2) and with [H2Os3(CO)10] yields [H2Os3(CO)9As(Os3(CO)9H2)] (3). Similarly [H2Os3(CO)10] reacts with AsH3 at room temperature to afford 3 in good yields. Thermal degradation and rearrangement of 2 gives the pentanuclear cluster [H2Os5(CO)17AsH] (4).  相似文献   

8.
Reduction of the heptaosmium cluster [Os7(CO)21] With [Et4N][NH4) gives the cluster dianion [Os7(CO)20]2–,1, in high yield. The reaction of the dianion with [AuPR 3Cl] (R=Et or Ph) in the presence of TlPF6 forms [Os7((CO)20(AuPR 3)2] [R=Et (2a);R = Ph(2b)] in 80% yield, while the corresponding reaction with (Os(C6H6)(CH3CN)3]2+ gives [Os8(CO)20 ( 6-C6H6)] (3) in reasonable yield (ca. 30%). The dianion,1, and the clusters2 and3 have been fully characterized by bout spectroscopic and crystallographic methods. The crystal structure of the [Ph4P]+ salt of1 shows that the metals in the anion adopt a capped octahedral geometry, with all twenty carbonyl ligands in terminal sites. The metal core geometry in2a is best described as a tricapped octahedron, and is based on the structure of the dianion1 with two adjacent octahedral faces capped by the Au atoms of the two AuPEt3 groups. In a similar fashion, the geometry of3 is related to that of1 with the addition of an Os(C6H6) unit capped to a triangular face, to give a bicapped octahedral framework.  相似文献   

9.
The reactions of the heterometallic complexes (-H)Os3(-O2CC5H4FeCp)(CO)10 (1) and Fe{(-O2CC5H4)(-H)Os3(CO)10}2 (2) with CF3COOH, CF3SO3H, and AcCl were studied. The reaction of 1 with CF3COOH involves interaction with the Cp ligands, protonation of the O atom of the bridging carboxylate group, and oxidative degradation of the complex. At low concentrations, CF3SO3H protonates the O atom of the bridging carboxylate group, while at high concentrations, degradation of the complex takes place. The reaction of complex 2with either CF3COOH or low concentrations of CF3SO3H results in successive elimination of two [(-H)Os3(CO)10] cluster fragments due to protonation of the O atoms of the carboxylate groups. In the case of high CF3SO3H concentrations, the Os—Os bonds of both cluster fragments of 2 are also protonated to give the [Fe{(-O2CC5H4)(-H)2Os3(CO)10}2]2+ dication. The Friedel—Crafts acylation of 1 takes place only when a large excess of AcCl and AlCl3 is used to give two new complexes, (-H)Os3(-O2CC5H4FeC5H4C(O)CH3)(CO)10 and (-H)Os3(-O2CC5H3C(O)CH3FeCp)(CO)10 in a 2 : 1 ratio.  相似文献   

10.
Low temperature photolysis ofM(CO)5 (M=Ru, Os) provides efficient synthesis for a variety ofM(CO)4(2-alkyne) derivatives. The molecules show surprising reactivity toward other 18-electron transition metal carbonyl compounds (M(CO)5 and CpM(CO)2,M=Co, Rh, Ir) to give homo- and heterodimetallacyclic complexes. The general features of the condensation reactions are described, the structures of the compounds discussed, and a few illustrative examples of the transformation of the bridging organic units given.  相似文献   

11.
在自制的仪器上以冲激光溅射铁、钌、锇的三核羰基原子簇化合物。由原位质谱观察和分析溅射产生的正负离子。比较了解离碎片及分布发现羰基锇原子簇化合物具有特殊的结构稳定性。它们不仅具有很强的金属键,而且锇与羰基分子还形成了很强的配位键。  相似文献   

12.
The heteroelement-containing alkylidene imide complexes with molybdenum and tungsten Et3SiCH=Mo(NAr)(OR)2 (I), Et3 ECH=W(NAr)(OR)2 (E = Si (II), Ge (III); Ar = 2,6-i-Pr2C6H3; R=CMe2 CF3) and π-complex (RO)2(ArN)Mo(CH2=CH-GeEt3) (IV) were synthesized by the reaction of Alkyl-CH=M(NAr) (OR)2 (M=Mo, W; Alkyl = t-Bu, PhMe2C) with organosilicon and organogermanium vinyl reagents Et3ECH=CH2 (E = Si, Ge). The structure of compounds I–III was determined by X-ray diffraction (XRD). The complexes I–IV are active initiators of metathesis polymerization of cycloolefins.  相似文献   

13.
Trinuclear products obtained from reactions between M3(CO)12 (M = Fe or Ru) and azobenzenes are shown to have the structure M33-NAr)2(CO)9, rather than the o-semidine formulation proposed earlier. ETC CO-substitution reactions are similar to those of Ru3(CO)12, with isocyanides occupying axial sites and tertiary phosphines and phosphites occupying equatorial sites on the Ru33-NPh)2(μ-dppm)(CO)7, in which the dppm ligand spans the non-bonded Ru … Ru vector.  相似文献   

14.
A series of novel chiral complexes with ,1and ,2 coordination of organic ligands were prepared by reactions of Os3(CO)11(MeCN) and (-H)Os3(CO)10(-OH) withL--serine ethyl ester and ethanolamine. The diastereomeric cluster complexes with serine ligands were separated by crystallization or chromatography. The structures of the compounds obtained were confirmed by1H NMR and IR spectroscopy, mass-spectrometry, elemental analysis, and X-ray diffraction analysis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 525–530, March, 1994.  相似文献   

15.
The migration of the double bond in the allylcarboxamide ligands of (μ-H)Os3(μ-O=CN RCH2CH=CH2) (CO)10 (R=H (1) or CH3 (2)), (μ-D)Os3(μ-O=CNDCH2CH=CH2) (CO)10, and (μ-H)Os3(μ-O=CNHCD2CH=CH2)(CO)10 clusters was studied by1H,2H, and13C NMR spectroscopy. Neither μ-D nor ND groups in the deuterated complexes are directly involved in prototropic processes of allylic rearrangement. Initially, the deuterium atom of the CD2 group migrates to the ψ-carbon atom of the allyl fragment to form the −CD=CH-CH2D propenyl moiety, in which the deuterium and hydrogen atoms are gradually redistributed between the ψ-and β-carbon atoms. The triosmium cluster complexes containing the bridging carboxamide ligands O=CNRR' catalyze the allylic rearrangement ofN-allylacetamide. Based on the data obtained, the probable scheme of the allylic rearrangements in clusters1 and2 was proposed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2182–2186, November, 1999.  相似文献   

16.
The electrochemical reductive acylation of (benzophenone)Cr(CO)3 and (benzophenone) [Cr(CO)3]2 has been performed in DMF, by electrochemical reduction of complexed ketones in the presence of acetic and benzoic anhydride in excess. Three complexed benzhydryl esters ArCH(OCOR)PhCr(CO)3, (Ar = Ph, R = Me: Ar = PhCr(CO)3, R = Me; Ar = PhCr(CO)3, R = Ph) were obtained in 46–57.5% yields after purification. Electrochemical reduction of (diphenylmethane)Cr(CO)3 in the presence of acetic anhydride in excess leads to m-benzyl acetophenone.  相似文献   

17.
M(bpy)2+3(M=Fe,Ru,Os)电子结构与相关性质   总被引:1,自引:0,他引:1  
报导了对配合物M(bpy)^2+3(M=Fe,Ru,Os)的量子化学密度泛函法研究的结果。B3LYP/LanL2DZ方法与基组的水平上进行计算,探讨M(bpy)^2+3电子结构特征及相关性质,特别是中心原子对配合物的配位键长、光谱性质,电荷布局及化学稳定性等的影响规律,为该类配合物的合成,为分析光、电、催化作用机理提供理论参考。  相似文献   

18.
报导了对配合物(M=Fe,Ru,Os)的量子化学密度泛函(DFT)法研究的结果.在B3LYP/LanL2DZ方法与基组的水平上进行计算,探讨的电子结构特征及相关性质,特别是中心原子对配合物的配位键长、光谱性质、电荷布居及化学稳定性等的影响规律,为该类配合物的合成,为分析光、电、催化作用机理提供理论参考.  相似文献   

19.
To explore the spectroscopic properties of pyridyl triazole Os(Ⅱ) complexes and how the substituent effects affect the spectroscopic properties of [Os(ptz)2L2] (L=PH3; ptzH=(2-pyridyl)-1,2,4-triazole) (1), [Os(bptz)2L2] (bptzH=3-tert-butyl-5-(2-pyridyl)-1,2,4-triazole) (2), [Os(fptz)2L2] (fptzH=3- (trifluoreomethyl)- 5-(2-pyridyl)-1,2,4-triazole) (3), and [Os(fbtz)2L2] (fbtzH=3-(trifluoreomethyl)-5-(4-tert-butyl- 2-pyridyl)-1,2, 4-triazole) (4), the density functional theory (DFT) method at the B3LYP level ...  相似文献   

20.
The synthesis and crystal structures of the clusters M3(AuPPh3)(C≡CFc)(CO)9 (M=Ru,3a; or M=Os,3b) are described. Compound3a was synthesized by deprotonation of Ru3H(C≡CFc)(CO)9 under the action of KOH/EtOH followed by treatment of the anionic complex [Ru3(C≡CFc)(CO)9] with chloro(triphenylphosphine)gold. Compound3b was prepared by the reaction of Os3(CO)10(NCMe)2 with FcC≡CAuPPh3, which was synthesized by the reaction of FcC≡CNa with ClAuPPh3. The pentanuclear cluster Ru4(AuPPh3)(C≡CFc)(CO)12 (4a), which was prepared by the reaction of3a with Ru3(CO)12, was characterized by spectral methods. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1295–1299, July, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号