首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Traditional Chinese medicines (TCMs) have attracted much attention in recent years. Elution-extrusion and/or back-extrusion counter-current chromatography (EECCC/BECCC) both take full advantage of the liquid nature of the stationary phase. They effectively extend the solute hydrophobicity window that can be studied and rendered the CCC technique particularly suitable for rapid analysis of complex samples. In this paper, a popular traditional Chinese medicine, Evodia rutaecarpa, was used as the target complex mixture for extrusion CCC separations. With a carefully selected biphasic liquid system (n-hexane/ethyl acetate/methanol/water, 3/2/3/2, v/v) and optimized conditions (VCM = VC, mobile phase flow rate: 3 mL/min in descending mode, sample loading: 100 mg), five fractions could be obtained in only 100 min on a 140-mL capacity CCC instrument using both elution- and back-extrusion methods. Each fraction was analyzed and identified compared with the data of major standards using LC/MS. Moreover, the performance of both extrusion protocols was systematically compared and summarized. EECCC could be operated continuously and was found extremely suitable for high-throughput separation; however, post-column addition of a clarifying reagent is recommended to smooth the UV-signal during the extrusion process. Considering BECCC, the practical operation is very simple by just switching a 4-port valve to change the flow direction. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode so that solutes with small and medium distribution constants have been eluted. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column, mix together and produce a broad peak showing in the mobile phase eluting after the stationary phase extrusion. Compared with classical CCC or other preparative separation tools, extrusion CCC approaches exhibit distinguished superiority in the modernization process of traditional Chinese medicines.  相似文献   

2.
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.  相似文献   

3.
Countercurrent chromatography (CCC) is a separation technique using a biphasic liquid system and centrifugal forces to maintain a support-free liquid stationary phase. Either one of the two phases can be the liquid stationary phase. It is even possible to switch the phase role during the separation. The dual-mode method is revisited recalling its theoretical background. The multi-dual mode (MDM) CCC method was introduced to enhance the resolution power of a CCC column. The theoretical study of the MDM method is validated by modeling the separation of two solutes. The basic hypothesis is that the forward step (partial classical elution) is followed by a backward step that returns the less retained solute to the column head. The equations show that the most important parameter to maximize resolution is not the number of MDM steps but the total volume of liquid phases used to elute the solutes. The model is validated calculating correctly the peak position of previously published MDM experiments.  相似文献   

4.
By essence, all kinds of chromatographic methods use the partitioning of solutes between a stationary and a mobile phase to separate them. Not surprisingly, separation methods are useful to determine accurately the liquid-liquid distribution constants, commonly called partition coefficient. After briefly recalling the thermodynamics of the partitioning of solutes between two liquid phases, the review lists the different methods of measurement in which chromatography is involved. The shake-flask method is described. The ease of the HPLC method is pointed out with its drawback: the correlation is very sensitive to congeneric effect. Microemulsion electrokinetic capillary electrophoresis has become a fast and reliable method commonly used in industry. Counter-current chromatography (CCC) is a liquid chromatography method that uses a liquid stationary phase. Since the CCC solute retention volumes are only depending on their partition coefficients, it is the method of choice for partition coefficient determination with any liquid system. It is shown that Ko/w, the octanol-water partition coefficients, are obtained by CCC within the -1 < log Ko/w < 4 range, without any correlation or standardization using octanol as the stationary phase. Examples of applications of the knowledge of liquid-liquid partition coefficient in the vast world of solvent extraction and hydrophobicity estimation are presented.  相似文献   

5.
Band broadening inside chromatographic columns was studied by Giddings 40 years ago. This theory is revisited pointing out that the band width depends only on the band position, x, inside the column and the height equivalent to a theoretical plate, H, and not on the solute affinity for the stationary phase. The band standard deviation, sigma, inside the column is simply sigma = square root [xH]. This property can be used in countercurrent chromatography (CCC), a chromatographic technique that works with a liquid stationary phase. Two possibilities are presented: 1-extrusion of the liquid stationary phase called elution-extrusion method, and 2-slow motion of the stationary phase in the same direction as the mobile phase, called cocurrent CCC method. A mixture of five steroids, prednisone, prednisolone acetate, testosterone, estrone and cholesterol, with partition coefficient varying from 0.1 to 40, is used with a 53 mL CCC column to show the method capabilities. The elution-extrusion method is discontinuous; however, it allows saving dramatic amounts of solvent and time. Cholesterol could be fully resolved in 2h and 120 mL instead of 7 h and 1.2 L using the classical elution way. The cocurrent CCC method is continuous and was able to resolve cholesterol at baseline in 40 min using 110 mL. Detection is difficult due to the fact that two immiscible liquid phases enter the detector.  相似文献   

6.
In countercurrent chromatography (CCC) both stationary and mobile liquids undergo intense mixing in the variable force field of a coil planet centrifuge and the separation process, like the separation in conventional solvent extraction column, is influenced by longitudinal mixing in the phases and mass transfer between them. This paper describes how the residence time distribution (or the elution profile) of a solute in CCC devices and the interpretation of experimental peaks, can be described by a recently developed cell model of longitudinal mixing. The model considers a CCC column as a cascade of perfectly mixed equal-size cells, the number of which is determined by the rates of longitudinal mixing in the stationary and mobile phases. Experiments were carried out to demonstrate the validation of the model and the possibility of predicting the partitioning behaviour of the solutes. The methods for estimating model parameters are discussed. Longitudinal mixing rates in stationary and mobile phases have been experimentally determined and experimental elution profiles are compared with simulated peaks. It is shown that using the cell model the peak shape for a solute with a given distribution constant can be predicted from experimental data on other solutes.  相似文献   

7.
There is some confusion in chromatography between terms such as solute distribution ratio, distribution constant and partition coefficient. These terms are very precisely defined in the field of liquid-liquid systems and liquid-liquid extraction as well as in the field of chromatography with sometimes conflicting definitions. Countercurrent chromatography (CCC) is a chromatographic technique in which the stationary phase is a support-free liquid. Since the mobile phase is also liquid, biphasic liquid systems are used. This work focuses on the exact meaning of the terms since there are consequences on experimental results. The retention volumes of solutes in CCC are linearly related to their distribution ratios. The partition coefficient that should be termed (IUPAC recommendation) distribution constant is linked to a single definite species. Using benzoic acid that can dimerize in heptane and ionize in aqueous phase and an 18 mL hydrodynamic CCC column, the role and relationships between parameters and the consequences on experimental peak position and shape are discussed. If the heptane/water distribution constant (marginally accepted to be called partition coefficient) of benzoic acid is 0.2 at 20 °C and can be tabulated in books, its CCC measured distribution ratio or distribution coefficient can change between zero (basic aqueous mobile phase) and more than 25 (acidic aqueous mobile phase and elevated concentration). Benzoic acid distribution ratio and partition coefficient coincide only when both dimerization and ionization are quenched, i.e. at very low concentration and pH 2. It is possible to quench dimerization adding butanol in the heptane/water system. However, butanol additions also affect the partition coefficient of benzoic acid greatly by increasing it.  相似文献   

8.
9.
Countercurrent chromatography (CCC) is a liquid chromatography technique in which the stationary phase is also a liquid. The main chemical process involved in solute separation is partitioning between the two immiscible liquid phases: the mobile phase and the support-free liquid stationary phase. The octanol-water partition coefficients (P(o/w)) is the accepted parameter measuring the hydrophobicity of molecules. It is considered to estimate active principle partitioning over a biomembrane. It was related to the substance biological activity. CCC is able to work with an octanol stationary phase and an aqueous mobile phase. In this configuration, CCC is a useful and easy alternative to measure directly the P(o/w) of the molecules compared to other methods including the classical and tedious shake-flask method. Three ketones are used as model compounds to illustrate the CCC protocol of P(o/w) measurement. The focus of this work is put on ionisable molecules whose apparent P(o/w) is completely changed by ionization. β-Blockers, diuretics and sulfonamides are compound classes that were studied. Some of the experimentally determined P(o/w) coefficients of the molecular forms disagreed with calculated and experimental values available in the literature. The P(o/w) coefficients of the ionic forms and the acidity constants were also calculated using a theoretical model. Relationships between biological properties and hydrophobicity are also discussed.  相似文献   

10.
Summary Utilizing the UNIFAC group model of activity coefficients the retention behaviour of a solute in the stationary phase of a liquid-solid chromatographic system is studied. By comparison of experimentally observed capacity ratios and calculated activity coefficients of solutes in the mobile phase, varying the concentration of a polar moderator, it is shown that the calculated activity coefficients in the stationary phase fit very well the equation formally identical with the Langmuir function. Comparison of activity coefficients in the mobile and the stationary phase proves equivalence between the solvent interaction and the competition theory.  相似文献   

11.
Particle-based Monte Carlo simulations were employed to examine the molecular-level effects of bonding density on the retention of alkane and alcohol solutes in reversed-phase liquid chromatography. The simulations utilized octadecylsilane stationary phases with various bonding densities (1.6, 2.3, 2.9, 3.5, and 4.2mumol/m(2)) in contact with a water/methanol mobile phase. In agreement with experiment, the distribution coefficient for solute transfer from mobile to stationary phase initially increases then reaches a maximum with increasing bonding density. A molecular-level analysis of the solute positional and orientational distributions shows that the stationary phase contains heterogeneous regions and the heterogeneity increases with increasing bonding density.  相似文献   

12.
Counter-current chromatography (CCC) is a form of liquid–liquid partition chromatography. It requires two immiscible solvent phases; the stationary phase is retained in the separation column, generally by centrifugal force, while the mobile phase is eluted. We recently replaced the mobile phase with supercritical fluid carbon dioxide (SF CO2). Since the solvent strength of SF CO2 can be varied by changing the temperature and pressure of the system, separation adjustments are thus more versatile. We investigated the pressure and temperature effects on resolution using water and low-carbon alcohol mixtures as the stationary phases. It was demonstrated that these special properties of SF CO2 were indeed beneficial to the optimization of separations. In addition, the phase retention ratio was examined in terms of separation resolution. The results appeared very similar to those obtained from conventional traditional CCC. This study should be helpful for the future development of SF applications in CCC.  相似文献   

13.
用DHDECMP(二己基-N,N-二乙基甲酰胺基亚甲基膦酸酯)的环己烷溶液作为固定相,硝酸溶液作为流动相,在逆流色谱上进行了镧系金属离子Ce^3^+,Nd^3^+,Sm^3^+,Gd^3^+,Tb^3^+,Dy^3^+,Er^3^+,Yb^3^+和Lu^3^+的相互分离研究。逆流色谱分离金属离子与分离有机物不同,保留体积不仅取决于静态分配比,还取决于萃取反应的机理。由逆流色谱得到的动态分配比和静态分配比成良好的线性关系,但并不相等,这一实验结果验证了有关理论研究结果。  相似文献   

14.
P. L. Zhu 《Chromatographia》1986,21(4):229-233
Summary An equation is derived which can describe how the retention of solutes is influenced by the composition of the mobile phase in reversed-phase liquid chromatography, the retention of solutes in alkyl bonded stationary phase regarded as the complexation between solute molecule and the active sites on the surface of the stationary phase. When the stationary phase is not fully saturated by the organic modifier, the activity of the active sites, the activity coefficient of the adsorbed solute as well as the activity coefficient of the solute in the mobile phase depend on the composition of the mobile phase. However, when the stationary phase is fully saturated, the composition of the mobile phase mainly influences the activity coefficient of the solute in the mobile phase. In addition, the selectivity of retention is discussed in terms of the derived equation.  相似文献   

15.
Summary The influence of the alcohol content of the mobile phase and water, acetic acid and aniline as mobile phase additives on the generation and shape of two additional changes of the streaming current, generated inside the liquid chromatography column by injection of any sample and recorded before the responses of retained solutes, was studied in a normal-phase system using silica gel as the stationary phase. The mobile phases were based on a n-heptane-1-propanol mixtures. Under the same conditions the relationships between the column interparticle volume, the column void volume and the total liquid volume in the column and the retention volumes of these two streaming current responses, having the form of chromatographic peaks, were studied. The column void volume was identified with the retention volume of n-octane. The total liquid volume in the column (column hold-up) was calculated from the weight loss of the column wetted with water at first and then dried in nitrogen stream. The retention volume of the first streaming current response equals the column interparticle volume disregarding the mobile phase composition. If the 95∶5 n-heptane-1-propanol mobile phase contains water up to 80% of its saturated concentration (up to 0.114% by vol.), the retention volume of the second response agrees with the total volume of the liquid in the silica gel column, with a precision better than 2%. At a higher relative water saturation the retention volume of the second response increases, while the column void volume decreases. Both changes are explained by the spontaneous formation of a highly polar stagnant liquid in the pores of the silica gel.  相似文献   

16.
Selectivity of 15 stationary phases was examined, either commercially available or synthesized in-house. The highest selectivity factors were observed for solute molecules having different polarizability on the 3-(pentabromobenzyloxy)propyl phase (PBB), followed by the 2-(1-pyrenyl)ethyl phase (PYE). Selectivity of fluoroalkane 4,4-di(trifluoromethyl)-5,5,6,6,7,7,7-heptafluoroheptyl (F13C9) phase is lowest among all phases for all compounds except for fluorinated ones. Aliphatic octyl (C8) and octadecyl (C18) phases demonstrated considerable selectivity, especially for alkyl compounds. While PBB showed much greater preference for compounds with high polarizability containing heavy atoms than C18 phase, F13C9 phase showed the exactly opposite tendency. These three stationary phases can offer widely different selectivity that can be utilized when one stationary phase fails to provide separation for certain mixtures. The retention and selectivity of solutes in reversed-phase liquid chromatography is related to the mobile phase and the stationary phase effects. The mobile phase effect, related to the hydrophobic cavity formation around non-polar solutes, is assumed to have a dominant effect on retention upon aliphatic stationary phases such as C8, C18. In a common mobile phase significant stationary phase effect can be attributed to dispersion interaction. Highly dispersive stationary phases such as PBB and PYE retain solutes to a significant extent by (attractive) dispersion interaction with the stationary phase ligands, especially for highly dispersive solutes containing aromatic functionality and/or heavy atoms. The contribution of dispersion interaction is shown to be much less on C18 or C8 phases and was even disadvantageous on F13C9 phase. Structural properties of stationary phases are analyzed and confirmed by means of quantitative structure-chromatographic retention (QSRR) study.  相似文献   

17.
Abstract

Utilizing retention data estimated by HPTLC on silica and activity coefficients in the non-aqueous mobile phase determined on the basis of saturation solubility of solutes, the effect of the mobile phase on retention of a set of structurally different solutes was studied. A quadratic relationship between the logarithm of retention factors or activity coefficients and the volume fraction of ethyl acetate in heptane - ethyl acetate solution was observed, suggesting a common retention machanism in liquid chromatography. The retention and/or relative retention of a solute was affected by both the mobile and the stationary phase. The magnitude of these effects depended merely on the molecular structure of a solute.  相似文献   

18.
19.
Berthod A  Schmitt N 《Talanta》1993,40(10):1489-1498
Countercurrent chromatography (CCC) is a separation technique in which the stationary phase is a liquid. The liquid stationary phase retention is a critical problem in CCC. The retention of 18 organic solvents in a hydrodynamic CCC apparatus was measured with an aqueous mobile phase, the centrifuge spin rate and the mobile phase flow rate being constant, 800 rpm and 2 ml/min, respectively. Conversely, water retention was measured when the 18 solvents were the mobile phases. A direct relationship between the liquid stationary phase retention and the phase density difference was found. The liquid phase density difference is the most important parameter for stationary phase retention in a hydrodynamic CCC apparatus with coiled tubes. The chromatographic retention of formanilide was measured in biphasic systems and expressed as the formanilide partition coefficient. It is shown that the partition coefficient correlates with the Reichardt polarity index of the organic solvent when the liquid stationary phase retention volume does not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号