首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For a two-phase immiscible flow through a heterogeneous porous medium in gravity field but with neglected capillary pressure, a macroscale model of first order is derived by a two-scale homogenization method while capturing the effect of fluid mixing. The mixing is manifested in the form of a nonlinear hydrodynamic dispersion and a transport velocity shift. The dispersion tensor is shown to be a nonlinear function of saturation. In the case offlow without gravity this function is proportional to the fractional flow derivative and depends on the viscosity ratio. For a flow which is one dimensional at the macroscale, the dispersion operator remains three dimensional and can be calculated in an analytical way. In the case of gravity induced flow, the longitudinal dispersion as the function of saturation is negative within some interval of saturation values. Numerical simulations of the microscale problemjustify the theoretical results of homogenization.  相似文献   

2.
It is well known that the relationship between capillary pressure and saturation, in two-phase flow problems demonstrates memory effects and, in particular, hysteresis. Explicit representation of full hysteresis with a myriad of scanning curves in models of multiphase flow has been a difficult problem. A second complication relates to the fact that P cS relationships, determined under static conditions, are not necessarily valid in dynamics. There exist P cS relationships which take into account dynamic effects. But the combination of hysteretic and dynamic effects in the capillary relationship has not been considered yet. In this paper, we have developed new models of capillary hysteresis which also include dynamic effects. In doing so, thermodynamic considerations are employed to ensure the admissibility of the new relationships. The simplest model is constructed around main imbibition and drainage curves and assumes that all scanning curves are vertical lines. The dynamic effect is taken into account by introducing a damping coefficient in P cS equation. A second-order model of hysteresis with inclined scanning curves is also developed. The simplest version of proposed models is applied to two-phase incompressible flow and an example problem is solved.  相似文献   

3.
Neuweiler  I.  Attinger  S.  Kinzelbach  W.  King  P. 《Transport in Porous Media》2003,51(3):287-314
We derive a large scale mixing parameter for a displacement process of one fluid by another immiscible one in a two-dimensional heterogeneous porous medium. The mixing of the displacing fluid saturation due to the heterogeneities of the permeabilities is captured by a dispersive flux term in the large scale homogeneous flow equation. By making use of the stochastic approach we develop a definition of the dispersion coefficient and apply a Eulerian perturbation theory to determine explicit results to second order in the fluctuations of the total velocity. We apply this method to a uniform flow configuration as well as to a radial one. The dispersion coefficient is found to depend on the mean total velocity and can therefore be time varying. The results are compared to numerical multi-realization calculations. We found that the use of single phase flow stochastics cannot capture all phenomena observed in the numerical simulations.  相似文献   

4.
The injection of gases into liquid saturated porous media is of theoretical and practical interest (e.g., air sparging for the removal of volatile organic compounds from contaminated aquifer sediments). The influence of the rate of gas delivery and the vertical distance from the source are developed. The concept of a “near-injection region” is presented in which the pressure gradients exceed buoyant gradients and thus exhibits largely radial flow. The near-injection size is shown to have an area required to carry the injected gas flow under unit gradient. The parabolic movement of gas outside of this area which has often been observed is explained as reflecting the sum of many realizations of gas channels following random lateral movements as they precede upward independent of flux. These concepts are confirmed through comparison with published and experimental data of air injection into slabs consisting of saturated sands of a range of textures.  相似文献   

5.
Theoretical analysis is presented to quantify the viscous coupling effect in two-phase flow through porous media. The analysis is based on the principle of potential difference equations as well as on the interfacial contact area and partition concept. The analysis shows that viscous coupling effect is negligible throughout the normalized saturation range. The expression, Xϕ 2, was developed for the quantification of the parameter that controls the amount of viscous coupling, where X was theoretically found to have a maximum value of 2.  相似文献   

6.
A new macroscale model of a two-phase flow in porous media is suggested. It takes into consideration a typical configuration of phase distribution within pores in the form of a repetitive field of mobile menisci. These phase interfaces give rise to the appearance of a new term in the momentum balance equation, which describes a vectorial field of capillary forces. To derive the model, a phenomenological approach is developed, based on introducing a special continuum called the Meniscus-continuum. Its properties, such as a unique flow velocity, an averaged viscosity, a compensation mechanism and a duplication mechanism, are derived from a microscale analysis. The closure relations to the phenomenological model are obtained from a theoretical model of stochastic meniscus stream and from numerical simulations based on network models of porous media. The obtained transport equation remains hyperbolic even if the capillary forces are dominated, in contrast to the classic model which is parabolic. For the case of one space dimension, the analytical solutions are obtained, which manifest non-classical effects as double displacement fronts or counter-current fronts.  相似文献   

7.
When determining experimentally relative permeability and capillary pressure as a function of saturation, a self-consistent system of macroscopic equations, that includes Leverett's equation for capillary pressure, is required. In this technical note, such a system of equations, together with the conditions under which the equations apply, is formulated. With the aid of this system of equations, it is shown that, at the inlet boundary of a vertically oriented porous medium, static conditions pertain, and that potentials, because of the definition of potential, are equal in magnitude to pressures. Consequently, Leverett's equation is valid at the inlet boundary of the porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous. Moreover, it is demonstrated that Leverett's equation is valid for flow along the length of a vertically oriented porous medium, provided cocurrent flow, or gravity-driven, countercurrent flow is taking place, and provided the porous medium is homogeneous and there are no hydrodynamic effects. However, Leverett's equation is invalid for horizontal, steady-state, forced, countercurrent flow. When such flow is taking place, it is the sum of the pressures, and not the difference in pressures, which is related to capillary pressure.  相似文献   

8.
Inertia Effects in High-Rate Flow Through Heterogeneous Porous Media   总被引:1,自引:0,他引:1  
The paper deals with the effects of large scale permeability–heterogeneity on flows at high velocities through porous media. The media is made of a large number of homogeneous blocks where the flow is assumed to be governed by the Forchheimer equation with a constant inertial coefficient. By assuming the validity of the Forchheimer equation at the large scale, an effective inertial coefficient is deduced from numerical simulations. Different media are investigated: serial-layers, parallel-layers and correlated media. The numerical results show that: (i) for the serial-layers, the effective inertial coefficient is independent of the Reynolds number and decreases when the variance and the mean permeability ratio increases; (ii) for the parallel-layers and the correlated media, the effective inertial coefficient is function of the Reynolds number and increases when the variance and the mean permeability ratio increases. Theoretical relationships are proposed for the inertial coefficient as function of the Reynolds number and the characteristics of the media.  相似文献   

9.
We present a modelization of the heat and mass transfers within a porous medium, which takes into account phase transitions. Classical equations are derived for the mass conservation equation, whereas the equation of energy relies on an entropy balance adapted to the case of a rigid porous medium. The approximation of the solution is obtained using a finite volume scheme coupled with the management of phase transitions. This model is shown to apply in the case of an experiment of heat generation in a porous medium. The vapor phase appearance is well reproduced by the simulations, and the size of the two-phase region is correctly predicted. A result of this study is the evidence of the discrepancy between the air – water capillary and relative permeability curves and water – water vapor ones.  相似文献   

10.
Quasi-static imbibition was simulated using random and correlated stochastic network models. Using the snap-off pore-scale displacement observed by Lernormand et al. (1983) the effects of many parameters on relative permeabilities and residual saturation reported in the literature were reproduced and explained. Increased relative permeabilities and decreased residual non-wetting phase saturation were the results of an increased contact angle (Li and Wardlaw, 1986b; Gauglitz and Radke, 1990; Blunt et al., 1992; Mogensen and Stenby, 1998) a decreased pore–throat aspect ratio, the presence of long-range pore-pore size correlations (Iaonnidis and Chatzis, 1993; Blunt, 1997a), or local pore–throat correlations (Jerauld and Salter, 1990; Iaonnidis and Chatzis, 1993). By modifying the level of snap-off, or its spatial distribution, these parameters varied the efficiency of the displacement patterns and ultimately affect relative permeabilities and residual saturations. Mani and Mohanty (1999) performed simulations on networks with infinite-ranged fractional Brownian motion (fBm) correlations and reported trends of relative permeabilities and residual saturations that were opposite to others’ results (Ioannidis and Chatzis, 1993; Blunt, 1997a). Applying a cut-off length to the fBm correlations reversed Mani and Mohanty’s trends to conform with the common observations.  相似文献   

11.
It is shown experimentally that in situ generation of foam is an effective method for achieving gas mobility control and diverting injected fluid to low permeability strata within heterogeneous porous media. The experimental system is composed of a 0.395 porosity, 5.35 µm2 synthetic sandstone and a 0.244 porosity, 0.686 µm2 natural sandstone. The cores are arranged in parallel and communicate through common injection and production conditions. Nitrogen is the gas phase and alpha-olefin sulfonate (AOS 1416) in brine is the foamer. Three types of experiments were conducted. First, gas alone was injected into the system after presaturation with the foamer solution. Second, gas and foamer solution were coinjected at an overall gas fraction of 90% into cores presaturated with surfactant. Each core accepted a portion of the injected gas and liquid according to the mobility within the core. Lastly, gas and foamer solution were coinjected into the individual, isolated porous media in order to establish baseline behavior. The results are striking. It is possible to achieve total diversion of gas injection to the low permeability medium in some cases. The results also confirm previous predictions that foamed gas can be more mobile in lower permeability porous media.  相似文献   

12.
13.
Laboratory experiments and numerical simulations investigate conservative contaminant transport in a heterogeneous porous medium. The laboratory experiments were performed in cylindrical columns 1m long and 3.5cm inside diameter filled with spherical glass beads. Concentration breakthrough curves are measured at a scale much finer than the size of the heterogeneity. Numerical simulations are based on a random walk in a known constant velocity field. The heterogeneity is a distinct, discontinuous change in the local permeability field. Fluid flow is miscible, flowing in a saturated porous medium. Previous work has shown this to be a very poorly understood phenomenon. The measurements reported here help to better understand how dispersion evolves through and past a heterogeneity.  相似文献   

14.
Hysteresis phenomena in multi-phase flow in porous media has been recognized by many researchers and widely believed to have significant effects on the flow. In an attempt to account for these effects, a theoretical model for history-dependent relative permeabilities is considered. This model is incorporated into 1-D two-phase nondiffusive flow system and the corresponding flow is predicted. Flow history is observed to have a notable impact on the saturation profile and fluids breakthrough.  相似文献   

15.
A computer-aided simulator of immiscible displacement in strongly water-wet consolidated porous media that takes into account the effects of the wetting films is developed. The porous medium is modeled as a three-dimensional network of randomly sized unit cells of the constricted-tube type. Precursor wetting films are assumed to advance through the microroughness of the pore walls. Two types of pore wall microroughness are considered. In the first type of microroughness, the film advances quickly, driven by capillary pressure. In the second type, the meniscus moves relatively slowly, driven by local bulk pressure differences. In the latter case, the wetting film often forms a collar that squeezes the thread of oil causing oil disconnection. Each pore is assumed to have either one of the aforementioned microroughness types, or both. The type of microroughness in each pore is assigned randomly. The simulator is used to predict the residual oil saturation as a function of the pertinent parameters (capillary number, viscosity ratio, fraction of pores with each type of wall microroughness). These results are compared with those obtained in the absence of wetting films. It is found that wetting films cause substantial increase of the residual oil saturation. Furthermore, the action of the wetting films causes an increase of the mean volume of the residual oil ganglia.  相似文献   

16.
We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w t h(t/ts). The dynamical exponent, , describing the front width evolution as function of time, was estimated to = 1.0. The results are compared to experimental data of Frette and co-workers.  相似文献   

17.
Ghanem  R.  Dham  S. 《Transport in Porous Media》1998,32(3):239-262
This study is concerned with developing a two-dimensional multiphase model that simulates the movement of NAPL in heterogeneous aquifers. Heterogeneity is dealt with in a probabilistic sense by modeling the intrinsic permeability of the porous medium as a stochastic process. The deterministic finite element method is used to spatially discretize the multiphase flow equations. The intrinsic permeability is represented in the model via its Karhunen–Loeve expansion. This is a computationally expedient representation of stochastic processes by means of a discrete set of random variables. Further, the nodal unknowns, water phase saturations and water phase pressures, are represented by their stochastic spectral expansions. This representation involves an orthogonal basis in the space of random variables. The basis consists of orthogonal polynomial chaoses of consecutive orders. The relative permeabilities of water and oil phases, and the capillary pressure are expanded in the same manner, as well. For these variables, the set of deterministic coefficients multiplying the basis in their expansions is evaluated based on constitutive relationships expressing the relative permeabilities and the capillary pressure as functions of the water phase saturations. The implementation of the various expansions into the multiphase flow equations results in the formulation of discretized stochastic differential equations that can be solved for the deterministic coefficients appearing in the expansions representing the unknowns. This method allows the computation of the probability distribution functions of the unknowns for any point in the spatial domain of the problem at any instant in time. The spectral formulation of the stochastic finite element method used herein has received wide acceptance as a comprehensive framework for problems involving random media. This paper provides the application of this formalism to the problem of two-phase flow in a random porous medium.  相似文献   

18.
Sheng  J. J.  Hayes  R. E.  Maini  B. B.  Tortike  W. S. 《Transport in Porous Media》1999,35(2):227-258
This paper describes a dynamic model for the simulation of foamy oil flow in porous media. The model includes expressions for the rate processes of nucleation, bubble growth and disengagement of dispersed gas bubbles from the oil. The model is used to simulate experimental results pertaining to primary depletion tests conducted in a sand pack. Using the model to interpret experimental results indicated that, although the lifetimes of supersaturation and dispersed gas bubbles may be short, supersaturated conditions are likely to exist, and dispersed gas bubbles are likely to be present during the entire production period, as long as the pressure continues to decline at a high rate. The model developed in this paper gave better agreement with experimental data than other proposed models. The effect of foamy oil flow increases as the rate of pressure decline increases.  相似文献   

19.
In the limit of zero capillary pressure, solutions to the equations governing three-phase flow, obtained using common empirical relative permeability models, exhibit complex wavespeeds for certain saturation values (elliptic regions) that result in unstable and non-unique solutions. We analyze a simple but physically realizable pore-scale model: a bundle of cylindrical capillary tubes, to investigate whether the presence of these elliptic regions is an artifact of using unphysical relative permeabilities. Without gravity, the model does not yield elliptic regions unless the most non-wetting phase is the most viscous and the most wetting phase is the least viscous. With gravity, the model yields elliptic regions for any combination of viscosities, and these regions occupy a significant fraction of the saturation space. We then present converged, stable numerical solutions for one-dimensional flow, which include capillary pressure. These demonstrate that, even when capillary forces are small relative to viscous forces, they have a significant effect on solutions which cross or enter the elliptic region. We conclude that elliptic regions can occur for a physically realizable model of a porous medium, and that capillary pressure should be included explicitly in three-phase numerical simulators to obtain stable, physically meaningful solutions which reproduce the correct sequence of saturation changes.  相似文献   

20.
The movement of wetting and nonwetting fluid flow in columns packed with glass beads is used to understand the more complicated flows in homogeneous porous media. The motion of two immiscible liquids (oil and water) is observed with different surfactants. Through dimensional analyses, fluid velocity is well correlated with interfacial tension and less dependent on particle size. In water–oil (W/O) experiments, finger pattern flows are observed if water is the displacing fluid that flows in an oil-filled porous media, whereas oil ganglia tend to form if oil is the displacing fluid in the water-wetted porous media. The results are well described by a simple model based on an earlier theory of flow in a tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号