首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

2.
The spin Hamiltonian parameters (SH) (g factors g and g) for the trigonal [Ti(H2O)6]3+ clusters in the rapidly frozen solutions of Ti3+ are calculated from the complete diagonalization (of energy matrix) method (CDM, which is established in this paper) and the perturbation theory method (PTM). The two methods are based on the two-spin-orbit-parameter model (where both the contribution due to the spin-orbit (SO) coupling parameter of central 3dn ion and that of ligand are included) rather than the one-SO-parameter model in the conventional crystal-field theory (where only the contribution due to the SO coupling parameter of 3dn ion is considered). The calculated results from both methods are not only consistent with the observed values, but also close to each other. This suggests that both methods can be effective in the studies of SH parameters.  相似文献   

3.
The trivalent chromium centers were investigated by means of electron paramagnetic resonance (EPR) in SrTiO3 single crystals grown using the Verneuil technique. It was shown that the charge compensation of the Cr3+-VO dominant centers in octahedral environment is due to the remote oxygen vacancy located on the axial axis of the center. In order to provide insight into spin-phonon relaxation processes the studies of axial distortion of Cr3+-VO centers have been performed as function of temperature. The analysis of the trigonal Cr3+ centers found in SrTiO3 indicates the presence of the nearest-neighbor strontium vacancy. The next-nearest-neighbor exchange-coupled pairs of Cr3+ in SrTiO3 has been analyzed from the angular variation of the total electron spin of S=2 resonance lines.  相似文献   

4.
The local lattice structure and EPR parameters (D, g, g) have been studied systematically on the basis of the complete energy matrix for a d3 configuration ion in a trigonal ligand field. By simulating the calculated optical and EPR spectra data to the experimental results, the local distortion parameters (ΔR, Δθ) are determined for V2+ ions in CdCl2 and CsMgCl3 crystals, respectively. The results show that the local lattice structure of CdCl2:V2+ system exhibits a compression distortion (ΔR=−0.0868 Å) while that of CsMgCl3:V2+ system exists an elongation distortion (ΔR=0.0165 Å). The different distortion may be ascribed to the fact that the radius of V2+ ion is smaller than that of Cd2+ ion or larger than that of Mg2+ ion. Moreover, the relationships between EPR parameter D and local structure parameters (R, θ) as well as the orbital reduction factor k and gfactors (g, g) are discussed.  相似文献   

5.
Two Ce3+-doped scintillator crystals, LSO (Lu2SiO5:Ce) and LPS (Lu2Si2O7:Ce), are studied by EPR spectroscopy. The analysis indicates that Ce3+ substitutes for Lu3+ ion in a C2-symmetry site for LPS and in two C1-symmetry sites for LSO, with a preference for the largest one, with 6+1 oxygen neighbors. Angular dependence of the EPR spectrum shows that the electronic ground state of Ce3+ is different in these two matrices. It is mainly composed of |MJ|=5/2 state in LPS and |MJ|=3/2 state in LSO. The temperature dependence of the linewidth shows a noticeably long spin lattice relaxation time, especially in LPS, which is the result of a stronger crystal field in LPS than in LSO.  相似文献   

6.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

7.
We report an electron paramagnetic resonance (EPR) study at 33.9 GHz and room temperature of oriented single crystal samples of bis(l-asparaginato)Zn(II) doped with Cu(II). The variation of the spectra with magnetic field orientation was measured in three crystal planes (a*b, bc and a*c, with a*=b×c). These spectra display two groups of four peaks arising from the hyperfine interaction with the ICu=3/2 nuclear spins of copper. They were assigned to Cu(II) ions in two lattice sites related by a 180° rotation around the b-crystal axis. The g and hyperfine coupling (A) tensors of the Cu(II) ions were evaluated from the single crystal data. Some indeterminacy in the assignment of the signals was avoided measuring the EPR spectrum of a powder sample. Their principal values are g1=2.060(1), g2=2.068(2), g3=2.283(2), and A1≈0.1×10−4, A2=13×10−4 and A3=165×10−4 cm−1. The eigenvectors corresponding to g3 and A3 are coincident within the experimental error; the other eigenvectors are rotated 5.6° in the perpendicular plane. Considering the crystal structure of bis(l-asparaginato)Zn(II), our EPR results indicate that the Cu(II) impurities replace Zn(II) ions in the host crystal. We propose a molecular model based on the EPR data and the structural information, and analyse the results comparing the measured values with those obtained in similar systems.  相似文献   

8.
X-band electron paramagnetic resonance (EPR) studies on divalent copper ions embedded in KMgClSO4·3H2O single crystals have been performed at low temperature (123 K). The angular variation of the EPR spectra reveals the presence of two Cu2+ sites, which have different orientations. The spin-Hamiltonian parameters of this six-coordinated cupric ion have been evaluated from the EPR spectra at 123 K. The forbidden lines due to ΔmI=±1 transitions are observed in between allowed transitions. The temperature variation EPR studies have also been performed both for a single crystal and a polycrystalline sample. The ground state wavefunction of Cu2+ ions has been estimated and is found to be an admixture of d3z2r2 and dx2y2. The temperature variation of the EPR spectra reveals that Cu2+ ions exhibit dynamic Jahn-Teller effect. From the polycrystalline EPR data, the temperature dependent magnetic susceptibilities are evaluated and discussed.  相似文献   

9.
The single crystal of [Ni(ina)2(H2O)4]·(sac)2, (NINS), (ina is isonicotinamide and sac is saccharinate) complex has been prepared and its structural, spectroscopic and thermal properties have been determined. The title complex crystallizes in monoclinic system with space group P21/c, Z=2. The octahedral Ni(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate ina ligands through the ring nitrogen and four aqua ligands to form discrete [Ni(ina)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bands. The magnetic environment of copper(II) doped NINS crystal has also been identified by electron paramagnetic resonance (EPR) technique. The g and A values of Cu2+ doped NINS single crystal were calculated from the EPR spectra recorded in three mutually perpendicular planes. These values indicated that the paramagnetic centre has a rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The complex exhibits only metal centred electroactivity in the potential range of −2.00, 1.25 V versus Ag/AgCl reference electrode.  相似文献   

10.
Cr(III)-doped Cd(HPO4)Cl·[H3N(CH2)6NH3]0.5, a new-layered cadmium phosphate, is synthesized in acidic condition at room temperature. EPR and optical studies are carried out at room temperature. Polycrystalline EPR spectrum reveals the presence of two sites of Cr(III) ions in this layered phosphate lattice with zero-field splitting values of 24.24 and 7.65 mT, indicating that Cr(III) ions are in distorted octahedral sites. The optical absorption spectrum of the sample indicates near octahedral symmetry for the dopant ions. Crystal field, inter-electronic and bonding parameters are evaluated by collaborating EPR and optical data. The evaluated parameters suggest the mode of entry of Cr(III) ion into the layered phosphate as interstitial site, and bonding between the metal and ligand is partially covalent.  相似文献   

11.
A crystalline electric field cubic symmetry site has been reported for Gd3+ in Cs2NaBiCl6 at room temperature. This host exhibits an apparent structural transformation below 100 K that is completely reversible. However, an EPR examination for a powdered sample of Cs2NaBiCl6:Gd3+ clearly demonstrates that there are no new large crystalline electric field symmetry sites arising between the transition temperature (100 K) and 30 K, suggesting, therefore, that the site symmetry remains predominantly cubic even at temperatures close to 30 K. In order to substantiate this statement, a computer EPR powder simulation was performed using the single-crystal-spin-Hamiltonian parameters obtained from the three different sites that emerge from the original site while observed at 30 K. A remarkable agreement is observed while comparing the computer-simulated data with that of powdered experimental data. It is important to mention here that several attempts were done trying to fit the observed new spectra to lower crystalline field symmetries, however, our best analytical adjustment was obtained with the cubic spin-Hamiltonian.Below 30 K, new structural transitions are present and the lattice loses its original cubic nature. However, at 10 K the EPR spectrum of the crystal again shows only seven lines that are very broad. This new spectrum cannot be fitted with previously used cubic spin-Hamiltonian parameters.  相似文献   

12.
The temperature dependences of 2H NMR spectra and spin-lattice relaxation time T1 have been measured for paramagnetic [Mn(H2O)6][SiF6]. The obtained 2H NMR spectra were simulated by considering the quadrupole interaction and paramagnetic shift. The variation of the spectra measured in phase III was explained by the 180° flip of water molecules. The activation energy Ea and the jumping rate at infinite temperature k0 for the 180° flip of H2O were obtained as 35 kJ mol−1 and 4×1014 s−1, respectively. The spectral change in phases I and II was ascribed to the reorientation of [Mn(H2O)6]2+ around the C3 axis where the Ea and k0 values were estimated as 45 kJ mol−1 and 1×1013 s−1, respectively. From the almost temperature independent and short T1 value, the correlation time for electron-spin flip-flops, τe, and the exchange coupling constant J were obtained as 3.0×10−10 s and 2.9×10−3 cm−1, respectively. The II-III phase transition can be caused by the onset of the jumping motion of [Mn(H2O)6]2+ around the C3 axis.  相似文献   

13.
In order to understand the structural behaviour of Cu(II) in a variety of ligand environments, single crystal electron paramagnetic resonance studies of Cu(II) doped in hexaaquazincdiaquabis(malonato)zincate [Zn(H2O)6][Zn(mal)2(H2O)2] are carried out at 300 K. Angular variation of copper hyperfine lines in three orthogonal planes shows the presence of single site, with spin Hamiltonian parameters as gxx=2.034, gyy=2.159, gzz=2.388, Axx=3.39 mT, Ayy=4.89 mT and Azz=13.72 mT. The g/A tensor direction cosines are compared with various Zn-O directions in the host lattice, which confirm that Cu(II) enters substitutionally in the lattice. The low value of Azz has been explained by considering admixture of d2x2y ground state with d2z excited state. EPR powder spectra at 300 and 77 K give identical spin Hamiltonian parameters (g=2.367, g=2.088, A=11.47 mT, A=2.63 mT). IR, UV-vis and powder XRD data confirm the structure and symmetry of the Cu(II) ion in the host lattice.  相似文献   

14.
Submillimeter and millimeter wave ESR measurements of spin gap systems SrCu2(PO4)2 and PbCu2(PO4)2, which have four kinds of dimers, have been performed to investigate the magnetic properties of spin gap systems using the pulsed magnetic field up to 35T. The observed ESR spectra of powder sample SrCu2(PO4)2 show sharp and single peak in the temperature range from 4.2 to 80 K. The anisotropy of the g-values turned out to be very small compared to the usual anisotropic powder spectra of copper compounds. The dynamical properties will be discussed from the temperature dependence measurements.  相似文献   

15.
The local lattice structure distortions for YAG and YGG systems doped with Cr3+ have been investigated by the d3 configuration complete energy matrices which contain the Zeeman energy besides the electron–electron interaction, the trigonal crystal field as well as the spin–orbit coupling interaction. The local lattice structure parameters R and θ of (CrO6)9− complex are determined for Cr3+ in YAG and YGG systems, respectively. The calculated results show that the local lattice structures have expansion distortions, which almost tend to the same after distortions. Meanwhile, the EPR parameter D, g factors (g||, g) and optical spectrum of these systems have been interpreted uniformly by quantitative calculation. It is shown that the effect of the orbit reduction factor k on g factors (g||, g) cannot be ignored.  相似文献   

16.
Gamma irradiated [(CH3)4N]InCl4 and [(CH3)4N]2CdCl4 single crystals were investigated by electron paramagnetic resonance at ambient temperature, and it has been found that both compounds indicate the existence of (CH3)3N+ radicals. The g factors were found to be isotropic, and the hyperfine constant for H atoms was measured as 2.86 mT and is isotropic for this radical in these substances. The hyperfine coupling constant of the N nucleus with the hole in (CH3)3N+ in [(CH3)4N]InCl4 was found to be anisotropic with the Azz=2.92, Ayy=1.62 and Axx=1.40 mT. From these, it has been revealed that the C3v-axis of (CH3)3N+ radical performs rotational or jumping reorientational motions around a fixed axis, in addition to the rotations of protons in CH3 groups and the rotational motions of CH3 groups around the C3v-axis of the radical. The g, and the hyperfine coupling factors of the N nucleus were isotropic in (CH3)3N+ in [(CH3)4N]2CdCl4. This indicates the motional behaviour of the radical in this compound is as in a liquid. This isotropic behaviour of the hyperfine coupling constants was found to be same until the attainable lowest temperature of 113 K in our laboratory.  相似文献   

17.
The observation of an anomalous temperature dependence of Mn2+ EPR spectra linewidth and nonaxial crystal-field parameter in K3H(SO4)2 and Rb3H(SO4)2 allows one to suggest the presence of “local mode” predicted by Yamada (Ferroelectrics 170 (1995) 23). The activation energy for this kind of excitation was found and equals 11.3 (0.5) and 7.4 (0.3) meV for Mn2+ doped K3H(SO4)2 and Rb3H(SO4)2, respectively.  相似文献   

18.
Crystal structure of [Zn(hydet-en)2]·C4O4·H2O (ZHES) (hydet-en is N-(2-hydroxyethyl)ethylenediamine) complex has been synthesized and characterized by analytical, spectroscopic (IR, UV/Vis) and voltammetric techniques. After doping Cu2+ ion, its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystalizes in monoclinic system with space group P21/c and with Z=4. Each hydet-en ligand acts as a tridentate ligand through the two N atoms and the hydroxyl O atom, resulting in a six coordinate Zn(II) ion. The EPR spectra were recorded in three perpendicular planes of Cu2+ doped ZHES single crystal. The calculated g and A values indicated that the paramagnetic center is rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The molecular orbital bond coefficients of the Cu(II) ion in d9 state is also calculated by using EPR and optical absorption parameters. The dianion SQ2− is oxidized reversibly in two consecutive steps to the corresponding radical monoanion and neutral form.  相似文献   

19.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

20.
Electron paramagnetic resonance (EPR) spectra of Cu2+ ion in ammonium dihydrogen phosphate are studied at liquid nitrogen temperature (77 K). Four magnetically inequivalent Cu2+ sites in the lattice are identified. The angular variation spectra of the crystal in the three orthogonal planes indicate that the paramagnetic impurity, Cu2+ enters the lattice substitutionally in place of NH4+ ions. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The ground state wave function of Cu2+ ion is constructed and found to be predominantly |x2-y2〉. The cubic field parameter (Dq) and tetragonal parameters (Ds and Dt) are determined from optical spectra at room temperature. By correlating EPR and optical absorption spectra, the bonding coefficients are calculated and nature of bonding of metal ion with different ligands in the crystal is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号