首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuum sublimed thin films of the blue dye hydrogen phthalocyanine (H2Pc) were incorporated into various optical recording structures. The dye was shown to be thermally, hydrolytically, and oxidatively stable. In all cases, the writing mechanisms are dependent on the sublimation of H2Pc. Several recording structures which take advantage of the sublimation property of H2Pc are demonstrated, including pit forming and bubble forming media. These H2Pc-based optical recording structures show very high optical contrast and low writing threshold energies. In addition, very thin films (50–75Å) of H2Pc were incorporated into a tellurium-based medium, which significantly enhanced the writing contrast observed in that medium.  相似文献   

2.
We report on near-edge X-ray absorption and X-ray photoemission experiments for the large π-conjugated organic molecule metal-free phthalocyanine (H2Pc) on two different single crystal surfaces. Results from H2Pc deposited on Ag(1 1 1) at 300 K show a clear linear dichroism indicating that the film grows as islands with the molecules lying essentially flat. On a Ni3Al(1 1 1) and a cooled Ag(1 1 1) substrate, however, the molecules form a homogeneous film and have an average tilt angle of 45-60°. The different film structure is the result of a different molecule-substrate interaction.  相似文献   

3.
The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc·S4·Na4) on mild steel in 1 mol/l HCl in the concentration range of 1.0 × 10−5 to 1.0 × 10−3 mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order of CuPc·S4·Na4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 × 10−3 mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds.  相似文献   

4.
The influence of salts CH3SO3Na and/or CH3SO3Bu4N on the acidity function H 0 of methanesulfonic acid (MSA) and its solutions in water, N,N-dimethylformamide (DMF) in mixtures of methanesulfonic acid-N,N-dimethylformamide MSA-DMF ≤ 1 and ethyl acetate (EA) in a mixture of methanesulfonic acid-ethyl acetate MSA/EA (1: 1) and 1,1,2,2-tetrachloroethane (TCE) on H 0 of methanesulfonic acid (MSA) and its mixtures with N,N-dimethylformamide (DMF), 2-pyrrolidine (Pyr) and ethyl acetate (EA) with the ratios of MSA: DMF equal to 1: 1 and 2: 1, MSA: Pyr (2: 1) and MSA: EA, equal to 2: 1, 1: 1, and 1: 2 is investigated by the indicator method at 25°C. It is revealed that a change in the acidity of the solutions of MSA in the aprotic solvents can occur as a result of the influence of salts both on the equilibrium composition of the nascent complexes and on their ionizing ability (both of these factors change acidity on addition of salts to the mixture of MSA-EA (1: 1)). An explanation is proposed why CH3SO3Na and CH3SO3Bu4N influence differently on the acidity of aqueous solutions of MSA. It is established that in the solutions of (TCE) the ionizing ability of MSA and its complexes with DMF, Pyr and EA, which have different degree of the proton transfer ($ K_{T_i } $ K_{T_i } ), depends on the concentration ratio of MSA: TCE and ($ K_{T_i } $ K_{T_i } ): TCE.  相似文献   

5.
The heterogeneous adsorption and catalytic oxidation of benzene, toluene and o-xylene (BTX) over the spent platinum catalyst supported on activated carbon (Pt/AC) as well as the chemically treated spent catalysts were studied to understand their catalytic and adsorption activities. Sulfuric aqueous acid solution (0.1N, H2SO4) was used to regenerate the spent Pt/AC catalyst. The physico-chemical properties of the catalysts in the spent and chemically treated states were analyzed by using nitrogen adsorption-desorption isotherm and elemental analysis (EDX). The gravimetric adsorption and the light-off curve analysis were employed to study the BTX adsorption and oxidation on the spent catalyst and its modified Pt/AC catalysts. The experimental results indicate that the spent Pt/AC catalyst treated with the H2SO4 aqueous solution has a higher toluene adsorption and conversion ability than that of the spent Pt/AC catalyst. A further studies of H2SO4 treated Pt/AC catalyst on their catalytic and heterogeneous adsorption behaviours for BTX revealed that the activity of the H2SO4 treated Pt/AC catalyst follows the sequence of benzene > toluene > o-xylene. The adsorption equilibrium isotherms of BTX on the H2SO4 treated Pt/AC were measured at different temperatures ranging from 120 to 180 °C. To correlate the equilibrium data and evaluate their adsorption affinity for BTX, the two sites localized Langmuir (L2m) isotherm model was employed. The heterogeneous surface feature of the H2SO4 treated Pt/AC was described in detail with the information obtained from the results of isosteric enthalpy of adsorption and adsorption energy distributions. Furthermore, the activity of H2SO4 treated Pt/AC about BTX was found to be directly related to the Henry's constant, isosteric enthalpy of adsorption and adsorption energy distribution functions.  相似文献   

6.
The inhibition action of the citric acid and three surfactants: sodium dodecyl sulfate (SDS), t-octyl phenoxy polyethoxyethanol (Triton X-100), sodium dodecyl benzene sulphonate (SDBS) on the corrosion behavior and gas evolution of Pb-Sb-As-Se was investigated in 12.5 M H2SO4 solution with linear sweep polarization, cyclic voltammetry and weight loss measurements methods. The results drawn from different techniques are comparable. It was found that these surfactants and citric acid act as good inhibitors for the corrosion of lead alloy in H2SO4 solution. SDS inhibited most effectively the lead alloy corrosion among the three surfactants and citric acid. The inhibition efficiency for the inhibitors decreases in the order: SDS > SDBS > Triton X-100 > citric acid > blank. The inhibition efficiency increases with rising of the inhibitor concentration. In this work, the effect of the inhibitors on hydrogen and oxygen evolution was studied. In addition, it was found that the adsorption of used inhibitors on lead alloy surface follows Langmuir isotherm.  相似文献   

7.
We characterized the surface defects in a-plane GaN, grown onto r-plane sapphire using a defect-selective etching (DSE) method. The surface morphology of etching pits in a-plane GaN was investigated by using different combination ratios of H3PO4 and H2SO4 etching media. Different local etching rates between smooth and defect-related surfaces caused variation of the etch pits made by a 1:3 ratio of H3PO4/H2SO4 etching solution. Analysis results of surface morphology and composition after etching by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrated that wet chemical etching conditions could show the differences in surface morphology and chemical bonding on the a-plane GaN surface. The etch pits density (EPD) was determined as 3.1 × 108 cm−2 by atom force microscopy (AFM).  相似文献   

8.
It is well established from experiments in premixed, laminar flames, jet-stirred reactors, flow reactors, and batch reactors that SO2 acts to catalyze hydrogen atom removal at stoichiometric and reducing conditions. However, the commonly accepted mechanism for radical removal, SO2 + H(+M) ? HOSO(+M), HOSO + H/OH ? SO2 + H2/H2O, has been challenged by recent theoretical and experimental results. Based on ab initio calculations for key reactions, we update the kinetic model for this chemistry and re-examine the mechanism of fuel/SO2 interactions. We find that the interaction of SO2 with the radical pool is more complex than previously assumed, involving HOSO and SO, as well as, at high temperatures also HSO, SH, and S. The revised mechanism with a high rate constant for H + SO2 recombination and with SO + H2O, rather than SO2 + H2, as major products of the HOSO + H reaction is in agreement with a range of experimental results from batch and flow reactors, as well as laminar flames.  相似文献   

9.
The formation of Co films on polycrystalline copper in diluted sulphuric acid was investigated by employing cyclic voltammetry (CV), atomic force microscopy, and in-situ magneto-optic Kerr effect (MOKE) techniques. By comparing CV measurements in the pure supporting electrolyte (11 mM K2SO4/1 mM H2SO4) and the cobalt sulphate solution (10 mM K2SO4/1 mM H2SO4/1 mM CoSO4), peaks from voltammetric cycling for copper dissolution, readsorption of dissolved copper ions, cobalt bulk dissolution and oxidation of hydrogen could be resolved. As the electroplating time increases, the size of the Co clusters increases and the deposition of Co corresponds to island growth. The first hysteresis loop occurs at a Co thickness of 0.33 nm in the longitudinal configuration. For films thinner than 7 nm, the Kerr intensity increases linearly because the Curie temperature of the film is well above 300 K.  相似文献   

10.
We present the possible construction of an organic FET-like photoactive device in which source-drain current through a phthalocyanine ( H2Pc film is affected by a photo-induced dipolar field in a photoactive “gate” electrode. The influence of the dipolar electric field on charge transfer between H2Pc molecules is modeled by DFT quantum-chemical calculations on H2Pc dimers and tetramers.  相似文献   

11.
We describe the electrochemical preparation of an ultrathin copper sulfide film on Au(1 1 1) and its structural characterization by in situ STM. The first step, underpotential deposition of a Cu submonolayer from CuSO4/H2SO4 solution, is followed by two electrolyte exchanges for (i) Cu-free (blank) H2SO4 solution and (ii) NaOH/Na2S solution. The well-known (√3 × √3)R30° structure of the upd Cu layer is stable in the blank electrolyte for at least 2 h. After exposure to bisulfide, the Cu layer contracts and forms two-dimensional islands of two distinct ordered surface phases, i.e. a rectangular and, at higher potentials, a hexagonal phase, with Cu-free Au(1 1 1) regions between them, the latter exhibiting the characteristic (√3 × √3)R30°-S adlayer structure. Potential changes lead to a complex phase behaviour including HS ? Sx oxidation/reduction and, at strongly anodic potentials, dissolution of the Cu adlayer.  相似文献   

12.
Zinc 2, (3)-tri-(phenylthio)-2, (3)-carboxy phthalocyanine (ZnPc(COOH)(SPh)3), zinc 2, (3)-tetra-(phenylthio) phthalocyanine (ZnPc(SPh)4) and 2, (3)-tetra-(phenylthio) phthalocyanine (H2Pc(SPh)4) were synthesized and their photophysical behavior were compared with those of a number of zinc phthalocyanine (ZnPc) derivatives. ZnPc(COOH)(SPh)3 and ZnPc(SPh)4 had similar fluorescence (ΦF=0.14) and triplet state (ΦT=0.65) quantum yields in dimethylsulfoxide, hence showing no effects of the replacement of one of the phenylthio groups with a carboxylic acid group. ZnPc(COOH)(SPh)3 displayed a slightly shorter triplet lifetime (τT=331 μs) than ZnPc (τT=350 μs) in DMSO, but within the range of ZnPc derivatives. The triplet lifetime for ZnPc(COOH)(SPh)3 is much longer than for the symmetrical derivative (ZnPc(SPh)4) with τT=149 μs in DMSO.  相似文献   

13.
The reaction of SO2 with stoichiometric TiO2(1 1 0), partially reduced TiO2 − x(1 1 0) and Cu/TiO2(1 1 0) was investigated using synchrotron based X-ray photoemission spectroscopy. SO2 adsorbs on perfect TiO2(1 1 0) forming SO4 species at room temperature, while SO2 dissociatively adsorbs on partially reduced TiO2 − x(1 1 0) forming SO4, SO3 as well as two sulfide species. SO2 exposure to Cu particles supported on perfect TiO2(1 1 0) can lead to the formation of SO4, SO3 and sulfide species. When depositing Cu on SO4/TiO2(1 1 0) at room temperature, the dissociation efficiency of Cu atoms is much higher than that of Cu deposited on TiO2(1 1 0) prior to SO2 dosing. The post-deposited Cu atoms can efficiently contact and react with SO4 species before they form Cu-Cu bonds and big clusters. Small Cu nanoparticles supported on TiO2(1 1 0) are more reactive towards SO2 than surfaces of bulk copper. The chemical reactivity of the Cu/TiO2(1 1 0) system increases with Cu coverage until reaching a maximum at θCu = 0.5-0.8 ML. After this point, an increase in Cu coverage leads to the formation of big Cu particles and the reactivity of the system decrease to that typical of bulk Cu. A comparison with results for SO2/Cu/MgO(0 0 1) indicates that the effects of size and metal ↔ oxide interactions are important for the chemical activation of Cu nanoparticles on titania.  相似文献   

14.
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H2SO4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10−4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.  相似文献   

15.
Measurements of the electrical conductivity were performed in KHSO4 at pressures between 0.5 and 2.5 GPa and in the temperature range 120-350 °C by the use of the impedance spectroscopy. The temperatures of the α-β phase transition (TTr) and of the melting (Tm), determined from the Arrhenius plots ln(σT) vs. 1/T, increase with pressure up to 1.5 GPa having dT/dP∼+45 K/GPa. Above the pressure 1.5 GPa, the pressure dependencies of TTr and Tm are negative dT/dP∼−45 K/GPa. At pressures above 0.5 GPa, the reversible decomposition of KHSO4 into K3H(SO4)2+H2SO4 (and probably into K5H3(SO4)4+H2SO4) affects the electrical conductivity of KHSO4, with the typical values of the protonic electrical conductivity, c. 10−1 S/cm at 2.5 GPa.  相似文献   

16.
In this study, the TiO2 nanotubes were fabricated by electrochemical anodization in a NH4F/Na2SO4/PEG400/H2O electrolyte system. Ultrasonic wave (80 W, 40 kHz) was used to clean the surface of TiO2 nanotube arrays in the medium of water after the completion of the anodization. Surface morphology (FESEM) and X-ray diffraction spectrum of the nanotubes treated by sonication at 0 min, 9 min, 40 min and 60 min were compared. The experimental results showed that the precipitate on the surface of the nanotube arrays could be removed by the ultrasonic wave. The treating time had an influence on the precipitate removal and 9 min (corresponding to 12 Wh) is the suitable time for surface cleaning of the TiO2 nanotubes on this experimental condition.  相似文献   

17.
Sub-monolayer and monolayer of lead phthalocyanine deposited on InSb(1 0 0) (4 × 2)/c(8 × 2) surface have been investigated by scanning tunneling microscopy and low energy electron diffraction. Molecules first adsorb on the indium rows of the (4 × 2)/c(8 × 2) structure in the [1 1 0] direction and diffuse at the surface in order to form two-dimensional islands. The molecule-substrate interaction stabilizes the PbPc molecules on the In rows. It weakens the interaction between molecules located in adjacent rows resulting in numerous gliding planes between the molecular chains, in the direction parallel to the rows. At monolayer completion, a long-range one-dimensional order is adopted by the molecules in the [1 1 0] direction.  相似文献   

18.
Tatsuya Konishi 《Surface science》2007,601(18):4122-4126
We studied the quantized conductance behavior of mechanically fabricated Pt nanoconstrictions under electrochemical potential control in H2SO4, Na2SO4, and NaOH solutions. There was no clear feature in the conductance histogram, when the electrochemical potential of the nanoconstrictions was kept at the double layer or the under potential deposited hydrogen potential. At the hydrogen evolution potential, the conductance histograms showed clear features around 0.5 and 1 G0 in the H2SO4 solution. In Na2SO4, and NaOH solutions, a 1 G0 feature with a shoulder appeared in the histogram. The quantized conductance behavior of Pt nanoconstrictions could be controlled by the electrochemical potential and solution pH.  相似文献   

19.
Nanosized phosphor materials, LaPO4:RE (RE=Dy3+, Sm3+) have been synthesized using water, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and mixed solvents at a relatively low temperature of 150 °C. X-ray diffraction (XRD) study reveals that as-prepared nanoparticles prepared in DMSO and EG are well crystalline and correspond to monoclinic phase. In the mixed water-DMSO or water-EG solvents, XRD patterns are in good agreement with hexagonal phase, but transformed to monoclinic phase at higher temperature of 900 °C. TEM images show well-dispersed and rice-shaped nanoparticles of diameter 5-10 nm, length of 13-37 nm for Dy3+-doped LaPO4 and diameter of 25-35 nm, length of 73-82 nm for Sm3+-doped LaPO4. Dy3+-doped LaPO4 shows two prominent emission peaks at 480 and 572 nm corresponding to 4F9/26H15/2 (magnetic dipole) and 4F9/26H13/2 (electric dipole) transitions, respectively. Similarly, for Sm3+-doped LaPO4, three prominent emission peaks at 561, 597 and 641 nm were observed corresponding to 4G5/26H5/2, 4G5/26H7/2 (magnetic dipole) and 4G5/26H9/2 (electric dipole) transitions, respectively. The luminescence intensity of the sample prepared in EG is more than that of DMSO or mixed solvents. Enhancement of luminescence is also observed after heat-treatment at 900 °C due to removal of quencher such as water, organic moiety and surface defects/dangling bonds. The samples are re-dispersible in polar solvent and can be incorporated in polymer film.  相似文献   

20.
Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn2+, Mn2+ and Ce4+ ions in the concentration range 1-10 × 10−3 M has been found out. The corrosion behaviour of iron in 0.5 M H2SO4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce4+ ? Mn2+ > Zn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号