首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-band electron paramagnetic resonance (EPR) studies on divalent copper ions embedded in KMgClSO4·3H2O single crystals have been performed at low temperature (123 K). The angular variation of the EPR spectra reveals the presence of two Cu2+ sites, which have different orientations. The spin-Hamiltonian parameters of this six-coordinated cupric ion have been evaluated from the EPR spectra at 123 K. The forbidden lines due to ΔmI=±1 transitions are observed in between allowed transitions. The temperature variation EPR studies have also been performed both for a single crystal and a polycrystalline sample. The ground state wavefunction of Cu2+ ions has been estimated and is found to be an admixture of d3z2r2 and dx2y2. The temperature variation of the EPR spectra reveals that Cu2+ ions exhibit dynamic Jahn-Teller effect. From the polycrystalline EPR data, the temperature dependent magnetic susceptibilities are evaluated and discussed.  相似文献   

2.
Crystal structure of [Zn(hydet-en)2]·C4O4·H2O (ZHES) (hydet-en is N-(2-hydroxyethyl)ethylenediamine) complex has been synthesized and characterized by analytical, spectroscopic (IR, UV/Vis) and voltammetric techniques. After doping Cu2+ ion, its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystalizes in monoclinic system with space group P21/c and with Z=4. Each hydet-en ligand acts as a tridentate ligand through the two N atoms and the hydroxyl O atom, resulting in a six coordinate Zn(II) ion. The EPR spectra were recorded in three perpendicular planes of Cu2+ doped ZHES single crystal. The calculated g and A values indicated that the paramagnetic center is rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The molecular orbital bond coefficients of the Cu(II) ion in d9 state is also calculated by using EPR and optical absorption parameters. The dianion SQ2− is oxidized reversibly in two consecutive steps to the corresponding radical monoanion and neutral form.  相似文献   

3.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

4.
The local lattice structure and EPR parameters (D, g, g) have been studied systematically on the basis of the complete energy matrix for a d3 configuration ion in a trigonal ligand field. By simulating the calculated optical and EPR spectra data to the experimental results, the local distortion parameters (ΔR, Δθ) are determined for V2+ ions in CdCl2 and CsMgCl3 crystals, respectively. The results show that the local lattice structure of CdCl2:V2+ system exhibits a compression distortion (ΔR=−0.0868 Å) while that of CsMgCl3:V2+ system exists an elongation distortion (ΔR=0.0165 Å). The different distortion may be ascribed to the fact that the radius of V2+ ion is smaller than that of Cd2+ ion or larger than that of Mg2+ ion. Moreover, the relationships between EPR parameter D and local structure parameters (R, θ) as well as the orbital reduction factor k and gfactors (g, g) are discussed.  相似文献   

5.
EPR and optical studies of single crystals of Mn2+: bis(l-Asparaginato)Zn(II) are reported. The spin-Hamiltonian parameters are determined employing the positions of a large number of resonance lines for various orientations of the external magnetic field. The best-fit zero-field parameters to the observed EPR spectra are obtained as, D=(228±2)×10−4 cm−1, E=(58±2)×10−4 cm−1 and a=(−12±1)×10−4 cm−1,whereas g=2.0002±0.0002, , and . From the optical absorption study, the lattice distortion is suggested. The electron repulsion parameters (B and C) and crystal field parameters (Dq and α) evaluated from the fitting of observed optical spectra are: B=858 cm−1, C=2620 cm−1, Dq=950 cm−1, and α=76 cm−1.  相似文献   

6.
We investigated the crystal growth, electron paramagnetic resonance (EPR) and optical absorption spectra of l-threonine doped with Cu2+. The quality, size and habit of the single crystals grown from aqueous solution by the slow solvent evaporation and by the cooling methods vary when the impurities are introduced during the growth process. The variations with the magnetic field orientation of the EPR spectra of single-crystal samples at room temperature and 9.77 GHz in three crystal planes (ab, bc and ac) show the presence of copper impurities in four symmetry-related sites of the unit cell. These spectra display well resolved hyperfine couplings of the of Cu2+ with the ICu= of the copper nuclei. Additional hyperfine splittings, well-resolved only for specific orientations of the magnetic field, indicate that the copper impurity ions in the interstitial sites have two N ligands with similar hyperfine couplings. The principal values of the g and ACu tensors calculated from the EPR data are g1=2.051(1), g2=2.062(2), g3=2.260(2), ACu,1=16.9(5)×10−4 cm−1, ACu,2=21.8(6)×10−4 cm−1, ACu,3=180.0(5)×10−4 cm−1. The principal directions corresponding to g3 and to ACu,3 are coincident within the experimental errors, reflecting the orientation of the bonding planes of the copper ions in the crystal. The values of the crystal field energies are evaluated from the optical absorption spectrum, and the crystal field and bonding parameters of the Cu impurities in the crystal are calculated and analyzed. The EPR and optical absorption results are discussed in terms of the crystal structure of l-threonine and the electronic structure of the Cu2+ ions, and compared with data reported for other systems. The effects of the impurities in the growth and habit of the crystals are also discussed.  相似文献   

7.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

8.
Cu(im)6 complexes in Zn(im)6Cl2·4H2O exhibit a strong Jahn-Teller effect which is static below 100 K and the complex in localized in the two low-energy potential wells. We have reinvestigated electron paramagnetic resonance (EPR) spectra in the temperature range 4.2-300 K and determined the deformation directions produced by the Jahn-Teller effect, energy difference 11 cm−1 between the wells and energy 300 cm−1 of the third potential well. The electron spin relaxation was measured by electron spin echo (ESE) method in the temperature range of 4.2-45 K for single crystal and powder samples. The spin-lattice relaxation is dominated by a local mode of vibration with energy 11 cm−1 at low temperatures. We suppose that this mode is due to reorientations (jumps) of the Cu(im)6 complex between the two lowest energy potential wells. At intermediate temperatures (15-35 K), the T1 relaxation is determined by the two-phonon Raman processes in acoustic phonon spectrum with Debye temperature ΘD=167 K, whereas at higher temperatures the relaxation is governed by the optical phonon of energy 266 cm−1. The ESE dephasing is produced by an instantaneous diffusion below 15 K with the temperature-independent phase memory time , then it grows exponentially with temperature with an activation energy of 97 cm−1. This is the energy of the first excited vibronic level. The thermal population of this level leads to a transition from anisotropic to isotropic EPR spectrum observed around 90 K. FT-ESE gives ESEEM spectrum dominated by quadrupole peaks from non-coordinating 14N atom of the imidazole rings and the peak from double quantum transition νdq. We show that the amplitude of the νdq transition can be used to determine the number of non-coordinating nitrogen atoms.  相似文献   

9.
Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of l-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5±1.4) GPa and 4.4±0.4, respectively.  相似文献   

10.
Optical absorption, EPR, Infrared and Raman spectral studies have been carried out on natural clinochlore mineral. The optical absorption spectrum exhibits bands characteristic of Fe2+ and Fe3+ ions. A band observed in the NIR region is attributed to an intervalence charge transfer (Fe2+-Fe3+) band. The room temperature EPR spectrum of single crystal of clinochlore mineral reveals the dominance of Fe3+ ion exhibiting resonance signals at g=2.66; 3.68 and 4.31 besides one isotropic resonance signal at g=2.0. The EPR studies have been carried out for a polycrystalline sample in the temperature range from 103 to 443 K and for a single crystal of clinochlore mineral in the temperature range 123-297 K. The number of spins (N) participating in resonance at g=4.3 signal of the single crystal of clinochlore mineral has been calculated at different temperatures. The paramagnetic susceptibility (χ) is calculated from the EPR data at different temperatures for single crystal of clinochlore mineral. The Curie constant and Curie temperature values are evaluated from 1/χ versus T graph. The infrared spectral studies reveal the formation of Fe3+-OH complexes due to the presence of higher amount of iron in this mineral. The Raman spectrum exhibits bands characteristic of Si-O-Si stretching and Si-O bending modes.  相似文献   

11.
Bulk semi-organic single crystals of l-lysine l-lysinium dichloride nitrate (l-LLDN) were grown by Sankaranarayanan-Ramasamy (SR) method. The experimental parameters involved in the present work are discussed in detail. The cut-off wavelength and the transmittance of the crystal were determined by UV-vis-NIR spectral analysis. Mechanical stability of the crystal was determined by Vickers microhardness tester. Refractive index of the crystal was measured using Brewster’s angle method. A simple interferometric technique was used for measuring birefringence of the crystal. The frequency dependent dielectric constant (εr) and dielectric loss (tan δ) were also measured. The results were analyzed for the l-LLDN crystals grown by both conventional and unidirectional methods.  相似文献   

12.
In order to understand the structural behaviour of Cu(II) in a variety of ligand environments, single crystal electron paramagnetic resonance studies of Cu(II) doped in hexaaquazincdiaquabis(malonato)zincate [Zn(H2O)6][Zn(mal)2(H2O)2] are carried out at 300 K. Angular variation of copper hyperfine lines in three orthogonal planes shows the presence of single site, with spin Hamiltonian parameters as gxx=2.034, gyy=2.159, gzz=2.388, Axx=3.39 mT, Ayy=4.89 mT and Azz=13.72 mT. The g/A tensor direction cosines are compared with various Zn-O directions in the host lattice, which confirm that Cu(II) enters substitutionally in the lattice. The low value of Azz has been explained by considering admixture of d2x2y ground state with d2z excited state. EPR powder spectra at 300 and 77 K give identical spin Hamiltonian parameters (g=2.367, g=2.088, A=11.47 mT, A=2.63 mT). IR, UV-vis and powder XRD data confirm the structure and symmetry of the Cu(II) ion in the host lattice.  相似文献   

13.
EPR, 13C NMR and TEM study of ultradisperse diamond (UDD) samples is reported. The compounds show a high concentration of paramagnetic centers (up to 1020 spin/g), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. The anomalous reduction in the spin-lattice relaxation time of 13C (from several hours in natural diamond to ∼150 ms in UDD clusters) is attributed to the interaction between the unpaired electrons of the paramagnetic centers and nuclear spins. 13C NMR line-width reflects the fact that the structure of the UDD surface is distorted in comparison to the ‘bulk’ diamond structure.  相似文献   

14.
15.
The Electron spin resonance (ESR) study of Cu2+-doped Bis(l-asparaginato)zinc(II) has been done at room temperature. Two magnetically equivalent sites for Cu2+ have been observed. The spin-Hamiltonian parameters evaluated with the fitting of spectra to rhombic symmetry crystalline field are gx=2.0341±0.0002, gy=2.0649±0.0002, gz=2.2390±0.0002, Ax=(51±2)×10−4 cm−1, Ay=(75±2)×10−4 cm−1and Az=(169±2)×10−4 cm−1. The ground state wave function of Cu2+ has also been determined. The g-anisotropy has been estimated and compared with the experimental value. Further with the help of optical study, the nature of bonding of metal ion with different ligands in the complex has been discussed.  相似文献   

16.
The local lattice structure distortions for YAG and YGG systems doped with Cr3+ have been investigated by the d3 configuration complete energy matrices which contain the Zeeman energy besides the electron–electron interaction, the trigonal crystal field as well as the spin–orbit coupling interaction. The local lattice structure parameters R and θ of (CrO6)9− complex are determined for Cr3+ in YAG and YGG systems, respectively. The calculated results show that the local lattice structures have expansion distortions, which almost tend to the same after distortions. Meanwhile, the EPR parameter D, g factors (g||, g) and optical spectrum of these systems have been interpreted uniformly by quantitative calculation. It is shown that the effect of the orbit reduction factor k on g factors (g||, g) cannot be ignored.  相似文献   

17.
Solid state 19F NMR in the temperature range from 96 to 366 K and room temperature EPR studies of fluorinated buckminsterfullerene C60F58 have been carried out. The temperature dependence of the line width and the spin-lattice relaxation time show hindered molecular motion with the activation energy of ΔEa=1.9 kcal/mol. Neither phase transition nor random rotation of C60F58 have been obtained. The spin-lattice relaxation rate is strongly affected by the presence of paramagnetic centers, namely, dangling C-C bonds yielding localized unpaired electrons. Such broken bonds are caused by C-C bond rupture in a cage-opened structure of hyperfluorinated species.  相似文献   

18.
Optical absorption and EPR spectra of Mn(II) and Co(II) doped zinc phosphate glasses have been investigated. Crystal filed parameters and g values are determined. For Mn(II) doped glass the values are Dq=850, B=850, and g values are around 2 at room temperature (RT). For Co(II) doped glass, Dq=890, B=700, and g=4.45 and 2.06 at liquid nitrogen temperature. The optical and EPR data has been correlated.  相似文献   

19.
Single crystal EPR study of Mn(II) doped in cobalt potassium phosphate hexahydrate has been carried out at room temperature. The impurity shows a 30 line pattern EPR spectra along a particular crystallographic axis suggesting the existence of only one type of impurity in place of Co(II) ion in the host lattice. The spin Hamiltonian parameters have been estimated as: g11=2.011, g22=1.998, g33=1.991, and A11=−8.9, A22=−8.8, A33=−8.4 mT and D11=−15.2, D22=−9.4, D33=24.6 mT, respectively. The sign of A is designated as negative and D as positive. The covalency of metal-oxygen bond has been estimated. The relaxation times, calculated as a function of temperature, indicate spin-lattice relaxation narrowing at room temperature.  相似文献   

20.
The paramagnetic center of tetragonal symmetry formed by the Yb3+ ion in the KZnF3 crystal has been studied using methods of EPR, ENDOR and optical spectroscopy. The location of the impurity ion and the structural model of the complex differing from the model of the Yb3+ center in KMgF3 have been established. The empirical scheme of the energy levels of the Yb3+ ion has been found. The parameters of its interaction with the crystal electrostatic field and the hyperfine interaction with ligands of the nearest environment have been determined. The parameters of the crystal field were used for the analysis of the distortions of the crystal lattice in the vicinity of Yb3+. The parameters of the transferred hyperfine interaction have been calculated for the distances between Yb3+ and F ions of the nearest environment obtained taking into account the found distortions. They are in good agreement with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号