首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the NOx species produced during the adsorption of NO at room temperature and during its coadsorption with oxygen on LaMnAl11O19 sample with magnetoplumbite structure obtained by a sol-gel process has been investigated by means of in situ FT-IR spectroscopy. The adsorption of NO leads to formation of anionic nitrosyls and/or cis-hyponitrite ions and reveals the presence of coordinatively unsaturated Mn3+ ions. Upon NO/O2 adsorption at room temperature various nitro-nitrato structures are observed. The nitro-nitrato species produced with the participation of electrophilic oxygen species decompose at 350 °C directly to N2 and O2. No NO decomposition is observed in absence of molecular oxygen. The adsorbed nitro-nitrato species are inert towards the interaction with methane and block the active sites (Mn3+ ions) for its oxidation. Noticeable oxidation of the methane on the NOx-precovered sample is observed at temperatures higher than 350 °C due to the liberation of the active sites as a result of decomposition of the surface nitro-nitrato species. Mechanism explaining the promoting effect of the molecular oxygen in the NO decomposition is proposed.  相似文献   

2.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

3.
In this paper we studied the effects of Bi2O3 and PbO addition on BiFeO3 (BFO) ceramic matrix. The structural, dielectric and magnetic properties of fifteen BFO samples were discussed in view of possible applications in RF and microwave devices. The present work also reports the preparation of the samples. Polyvinyl alcohol (PVA) and tetraethyl orthosilicate (TEOS) were also added as a binder in the fabrication procedure. The samples have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and magnetic hysteresis measurements. Further, a study based on impedance spectroscopy also has been done. Dielectric permittivity (ε′) and dielectric loss (tan δ) were measured at room temperature in the frequency range 100 Hz-10 MHz, as well as a.c. conductivity. The -Im[Z(f)] versus Re[Z(f)] plot has been obtained. The samples were investigated in view of possible applications like miniaturized filters, diplexers and dielectric resonator antennas (DRA). In the RF and MW frequency region, the application of magneto-dielectric and multiferroic perovskite composite materials is desirable for the miniaturization of components.  相似文献   

4.
The ground state of the solid solution of the two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H NMR. The existence of a magnetic ordering in the sample with the Cl-content x=0.85 was clearly demonstrated by a drastic splitting in a resonance line at low temperatures below TN=13.5 K. The observed NMR spectra in the ordered state was qualitatively consistent with the simple antiferromagnetic state.  相似文献   

5.
Erbium and ytterbium codoped double tungstates NaY(WO4)2 crystals were prepared by using Czochralski (CZ) pulling method. The absorption spectra in the region 290-2000 nm have been recorded at room temperature. The Judd-Ofelt theory was applied to the measured values of absorption line strengths to evaluate the spontaneous emission probabilities and stimulated emission cross sections of Er3+ ions in NaY(WO4)2 crystals. Intensive green and red lights were measured when the sample were pumped by a 974 nm laser diode (LD), especially, the intensities of green upconversion luminescence are very strong. The mechanism of energy transfer from Yb3+ to Er3+ ions was analyzed. Energy transfer and nonradiative relaxation played an important role in the upconversion process. Photoexcited luminescence experiments are also fulfilled to help analyzing the transit processes of the energy levels.  相似文献   

6.
The trivalent chromium centers were investigated by means of electron paramagnetic resonance (EPR) in SrTiO3 single crystals grown using the Verneuil technique. It was shown that the charge compensation of the Cr3+-VO dominant centers in octahedral environment is due to the remote oxygen vacancy located on the axial axis of the center. In order to provide insight into spin-phonon relaxation processes the studies of axial distortion of Cr3+-VO centers have been performed as function of temperature. The analysis of the trigonal Cr3+ centers found in SrTiO3 indicates the presence of the nearest-neighbor strontium vacancy. The next-nearest-neighbor exchange-coupled pairs of Cr3+ in SrTiO3 has been analyzed from the angular variation of the total electron spin of S=2 resonance lines.  相似文献   

7.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

8.
Two Ce3+-doped scintillator crystals, LSO (Lu2SiO5:Ce) and LPS (Lu2Si2O7:Ce), are studied by EPR spectroscopy. The analysis indicates that Ce3+ substitutes for Lu3+ ion in a C2-symmetry site for LPS and in two C1-symmetry sites for LSO, with a preference for the largest one, with 6+1 oxygen neighbors. Angular dependence of the EPR spectrum shows that the electronic ground state of Ce3+ is different in these two matrices. It is mainly composed of |MJ|=5/2 state in LPS and |MJ|=3/2 state in LSO. The temperature dependence of the linewidth shows a noticeably long spin lattice relaxation time, especially in LPS, which is the result of a stronger crystal field in LPS than in LSO.  相似文献   

9.
High-purity ZnO nanowires have been synthesized on Si substrates without the presence of a catalyst at 600 °C by a simple thermal vapor technique. Photoluminescence (PL) spectra of the annealed samples at 900 °C under oxygen and argon gases have been investigated. After O2 or Ar annealing, the PL visible-emission intensity that is related to intrinsic defects (oxygen vacancies) is greatly reduced compared with as-grown ZnO nanowires because the oxygen-gas ions or oxygen interstitials diffuse into the oxygen vacancies during annealing process. The blue-band peak of the O2- or Ar-annealed ZnO naonowires is also smaller than the green-band peak in the visible broadband because of the reduction of oxygen vacancies. Therefore, the main intrinsic defects (oxygen vacancies) of as-grown ZnO nanowires can be reduced by O2 or Ar annealing, which is an important procedure for the development of advanced optoelectronic ZnO nanowire devices.  相似文献   

10.
Vanadium garnets NaPb2Co2V3O12 and NaPb2Ni2V3O12 have been successfully synthesized. The X-ray diffraction experiments indicate that these compounds have the garnet structure of cubic symmetry of space group with the lattice constant of 12.742 Å (NaPb2Co2V3O12) and 12.666 Å (NaPb2Ni2V3O12), respectively. The magnetic susceptibility of NaPb2Ni2V3O12 shows the Curie-Weiss paramagnetic behavior between 4.2 and 350 K. The effective magnetic moment μeff of NaPb2Ni2V3O12 is 3.14 μB due to Ni2+ ion at A-site and the Weiss constant is −3.67 K (antiferromagnetic sign). For NaPb2Co2V3O12, the simple Curie-Weiss law cannot be applicable. The ground state is the spin doublet and the first excited state is spin quartet , according to Tanabe-Sugano energy diagram on the basis of octahedral crystalline symmetry. This excited spin quartet state just a bit higher than ground state influences strongly the complex temperature dependence of magnetic susceptibility for NaPb2Co2V3O12.  相似文献   

11.
BaO-Al2O3-P2O5 glasses containing different concentrations of NiO (ranging from 0 to 1.0 mol%) were prepared. A number of studies viz., chemical durability, differential thermal analysis, spectroscopic (infrared, optical absorption spectra), magnetic susceptibility and dielectric properties (constant ε′, loss tan δ, AC conductivity σAC over a range of frequency and temperature) of these glasses have been carried out. The studies on chemical durability indicate that there is a significant increase in the corrosion resistance of the glasses; where as the results of differential thermal analysis suggests that there is a substantial improvement in the glass forming ability, with increase in the concentration of NiO up to 0.6 mol% in the glass matrix. The optical absorption, magnetic susceptibility and IR spectral studies point out nickel ions occupy both tetrahedral and octahedral positions in the glass network; the later positions seems to be dominant when the concentration of NiO is beyond 0.6 mol% in the glass matrix. The studies of dielectric properties reveal that the presence of nickel oxide in the glass network causes a considerable improvement in the insulating strength of the se glasses when the concentration of NiO?0.6 mol%.  相似文献   

12.
Yttrium borate doped with uranium was prepared by mixing and heating yttrium oxide obtained through oxalate precipitation route, boric acid and requisite amount of nuclear-grade uranium oxide at high temperature. Photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies were carried out on gamma-irradiated doped/undoped yttrium borate samples in the temperature range 300-600 K. TSL studies showed the presence of two glow peaks at 414 and 471 K. PL studies along with lifetime decay investigation suggested uranium goes in the matrix as UO22+. EPR studies showed the presence of O2radical ion along with electron trapped in defect centres, which might have been produced for charge compensation. Apart from this, CO2 radical was also observed in the system having its origin from residual oxalate ion. Temperature dependence EPR studies of the observed radical confirmed the involvement of the CO2 and dioxide radical ion in the observed glow peaks. By correlating the TSL, PL and ESR data, probable mechanism is proposed for the observed TSL glow in the system.  相似文献   

13.
A power law used to describe the AC conductivity from 299 to 393 K of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58 led to fractional exponent values ranging from 1.08 to 0.91, depending on structural changes induced on temperature variation [B. Louati, M. Gargouri, K. Guidara and T. Mhiri, J. Phys. Chem. Solids 66 (2005) 762]. In the present note, we suggest that the fractional law exhibits features of lattice relaxation. Despite the structural changes, the parameters of the power law are mutually interconnected to yield a temperature independent phenomenon. Such behavior is probably of general validity and characterizes the universal fractional dispersion of the AC conductivity, as it was also observed in glasses of different composition.  相似文献   

14.
Li2O-Nb2O5-ZrO2-SiO2 glasses mixed with different concentrations of V2O5 were crystallized. The samples were characterized by XRD, SEM and DTA techniques. The SEM pictures indicated that the samples contain well defined and randomly distributed crystal grains. The X-ray diffraction studies have revealed the presence of several crystalline phases in these samples. Optical absorption, ESR and photoluminescence spectral studies on these samples have indicated that a considerable proportion of vanadium ions do exist in V4+ state in addition to V5+ state and the redox ratio seems to be increasing with increase in the concentration of crystallizing agent V2O5. The infrared spectral studies have pointed out the existence of conventional SiO4, ZrO4, NbO6, VO structural units in the glass ceramic network. The study of dielectric properties suggested a decrease in the insulating character of the glass ceramics with increase in the crystallizing agent. A.C. conductivity in the high temperature region seems to be connected mainly with the polarons involved in the process of transfer from V4+↔V5+ ions.  相似文献   

15.
We show that by Ca doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppresses the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc∼3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation in the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc∼5.5 K when reacted with Pd to form materials of the type PdzBi2Te3.  相似文献   

16.
The microwave dielectric and magnetic properties of Pb(Fe2/3W1/3)O3 multiferroic ceramics were investigated. A dielectric dispersion occurring in the frequency range 100 MHz-3 GHz and in a broad temperature range showed itself to be a powerful tool to detect magnetostrictive effects. The experimental results revealed the following remarkable features: the temperature dependence of fR (characteristic frequency) and the dielectric strength Δε (characteristic of the dispersion) enabled us to identify not only the para-ferroelectric (TC≈180 K) but also the para-antiferromagnetic (TN≈340 K) phase transitions, while magnetic measurements revealed the para-antiferromagnetic ordering and a weak superexchange interaction (TN2∼15 K). Additionally, both characterizations confirmed the existence of structural or magnetic instabilities around 250 K.  相似文献   

17.
The compounds U4Rh13Si9 and U4Ir13Si9 crystallize with the orthorhombic Er4Ir13Si9-type structure that contains three non-equivalent positions of uranium atoms. Their magnetic, electrical transport and thermal properties were studied down to liquid helium temperature in magnetic fields up to 9 T. Both compounds have been found to order antiferromagnetically at low temperatures and to exhibit complex magnetic behavior in the ordered state. Some features characteristic of spin fluctuators (U4Rh13Si9) and Kondo lattices (U4Ir13Si9) indicate that the two ternaries studied are novel strongly correlated electron systems.  相似文献   

18.
Hierarchical MnO2 submicrospheres have been successfully synthesized by a wet chemical method. The as-prepared products were characterized by means of XRD, SEM, FTIR, TG, and TEM. With the as-prepared MnO2 submicrospheres as precursors, LiMn2O4 microspheres were conveniently prepared by a simple solid-state reaction between MnO2 and LiOH at a temperature as low as 600 °C. Electrochemical properties of the as-prepared MnO2 submicrospheres and LiMn2O4 microspheres as cathode materials in lithium ion cells were investigated by galvanostatic charge/discharge tests.  相似文献   

19.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

20.
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号