首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

2.
In the present study, a two-step method was applied to synthesise Cu2+-modified TiO2 nanorod array thin films for photocatalytic processes. TiO2 nanorod array thin films were synthesised by a hydrothermal method and then modified with an ultrasonic-assisted sequential cation adsorption method. The samples were characterised by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) analysis. The photoelectrochemical properties of the samples were evaluated by linear sweep voltammetry and Mott–Schottky analysis; photocatalytic activities were tested by methylene blue degradation under visible light. The photocurrent density of the TiO2/FTO sample modified with 50 mM Cu2+ solution was 26 times higher than that of the unmodified TiO2/FTO sample. Additionally, methylene blue degradation efficiency under visible light was increased 40% with respect to the efficiency of the unmodified sample. The mechanism of the photocatalytic activity enhancement of Cu2+-modified TiO2 nanorod films was discussed.  相似文献   

3.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

4.
N-doped TiO2/C3N4 composite samples were synthesized by heating the mixture of the hydrolysis product of TiCl4 and C3N4 at different weight ratios. The samples were characterized by X-ray diffraction (XRD), Raman spectrum, UV–vis absorption spectrum, photoluminescence spectrum, X-ray photon electron spectrum (XPS) and surface photovoltage spectrum (SPS). The XRD and Raman results indicate that the introduction of C3N4 could inhibit the formation of rutile TiO2. The composite samples show slight visible light absorption due to the introduction of C3N4. The XPS result reveals that some amount of nitrogen is doped into TiO2, and C3N4 exists in the composite sample. The intensities of the SPS signal in the composite samples decrease with the rise in the amount of C3N4 in the samples. The photocatalytic activity was evaluated from the Rhodamine B (RhB) degradation under fluorescence light irradiation. The composite samples show significantly enhanced photocatalytic activities and the RhB self-sensitized photodegradation in this system was observed by measuring the photocurrent in the dye sensitized solar cell using the composite as the working electrode.  相似文献   

5.
We report the formation of mesoporous zinc sulphide, composed by the fine network of nanoparticles, which was formed via a single precursor Zn(SOCCH3)2Lut2 complex. The complex was chemically synthesized using zinc carbonate basic, 3,5-lutidine and thioacetic acid, in air. The metal precursor complex was characterized using different conventional techniques. Thermogravimetric analysis (TGA) result indicates that the decomposition of the complex starts at 100 °C and continues up to 450 °C, finally yielding ZnS. ZnS nanocrystals were characterized by powder X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), N2-sorption isotherm, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The grain diameter of nanocrystals was found to be 4-5 nm. The material followed Type-IV N2-sorption isotherm, which is the characteristic of mesoporous materials. The band gap energy, as obtained from optical measurements was around 3.8 eV.  相似文献   

6.
Intense and broad photoluminescence (PL) emission at room temperature was observed on structurally disordered Ba[Zr0.25Ti0.75]O3 (BZT) powders synthesized by the polymeric precursor method. BZT powders were annealed at 573 K for different times and at 973 K for 2 h in oxygen atmosphere. The single-phase cubic perovskite structure of the powder annealed at 973 K for 2 h was identified by X-ray diffraction and Fourier transform Raman techniques. PL emission increased with the increase of annealing time, which reached its maximum value in the powder annealed at 573 K for 192 h. First principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered models. The theoretical calculations and experimental measurements of Ultraviolet-visible absorption spectroscopy indicate that the presence of intermediary energy levels in the band gap is favorable for the intense and broad PL emission at room temperature in disordered BZT powders. The PL behavior is probably due the existence of a charge gradient on the disordered structure, denoted by means of a charge transfer process from [TiO5]-[ZrO6] or [TiO6]-[ZrO5] clusters to [TiO6]-[ZrO6] clusters.  相似文献   

7.
This paper deals with the sol-gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ∼30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400-600 and 700-900 nm in 78-300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400-600 and 700-900 nm, respectively.  相似文献   

8.
TiO2 (anatase and rutile) nanoparticles with an average crystallite size of 20-40 nm have been prepared at room temperature by polyol-mediated synthesis technique in a semi-aqueous solvent medium using titanium iso-propoxide as the titanium source, acetone as the oil phase and ethylene glycol as the stabilizer. Phase and microstructure of the resultant materials have been characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photocatalytic degradation of acetaldehyde using TiO2 nanoparticles was investigated by gas-chromatography technique.  相似文献   

9.
Nanoscaled Zn2SiO4:Mn2+ green phosphor with regular and uniform morphology was synthesized by hydrothermal method at a low temperature of 140 °C. The structure and morphology of the phosphor was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of the hydrothermal temperature and the time on the crystallite structure and the vacuum ultraviolet (VUV) photoluminescence (PL) properties were evaluated. The as-synthesized nanoscaled Zn2SiO4:Mn2+ phosphor exhibited intensive broad emission around 523 nm, which was attributed to the 4T16A1 transition of Mn2+. The PL intensity increased along with the increasing hydrothermal temperature and time. The heat-treated phosphors exhibited higher PL intensity than the corresponding samples prepared using the conventional solid-state reaction.  相似文献   

10.
In this study, nano-TiO2 thin film electrode and solar cell have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption spectra, contact angle, X-ray photoelectron spectroscopy (XPS), and current-voltage characteristics analyses. X-ray diffraction patterns show that the best sintering temperature of a nano-TiO2 film is 600 °C, at which TiO2 anatase phase forms best and the particle size of 8-10 nm can be obtained. The SEM images of a nano-TiO2 thin film show that the surface of the film is smooth and porous, and the thickness of the nano-TiO2 film is 4 μm. The measurements of contact angle between nano-TiO2 film and deionized water (DI water) reveal that the nano-TiO2 film is super-hydrophilic when solarized under ultraviolet. The electrode of dye-sensitized solar cell is used as a free-base porphyrin with carboxyl group, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the sensitizer to adsorb onto the TiO2 thin film. From the results of ultraviolet-visible absorption spectra and XPS analyses of the electrode, the effects of nano-TiO2 particles’ addition to the electrode of dye-sensitized solar cell can improve the absorption of visible light (400-700 nm) and increase electrons transferred from TCPP to the conduction band of TiO2, resulting in the enhancement of efficiency for dye-sensitized solar cells.  相似文献   

11.
Flower-like Bi12TiO20 hierarchical nanostructures composed of numerous nanobelts were synthesized at 180 °C within 1 h by a microwave-assisted hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB) for the first time. The as-prepared products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) absorption spectroscopy. Furthermore, the hierarchical Bi12TiO20 nanostructures exhibited higher photocatalytic activities in the degradation of Rhodamine B under visible-light irradiation than that of the samples prepared without CTAB. In addition, the role of CTAB cationic surfactant has been investigated thoroughly and a possible mechanism is proposed.  相似文献   

12.
TiO2 microspheres with mesoporous textural microstructures and high photocatalytic activity were prepared by hydrothermal treatment of mixed solution of titanium sulfate and urea with designed time. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurements. The photocatalytic activity was evaluated via the photocatalytic oxidation of acetone in air at room temperature. The results show that the hydrothermal time significantly influences on the morphology, microstructure and photocatalytic activity of the as-prepared samples. With increasing hydrothermal time, specific surface areas and pore volumes decrease, contrarily, the crystallite size and relative anatase crystallinity increase. The photocatalytic efficiency of the as-prepared samples is obviously higher than that of commercial Degussa P25 (P25) powders. Especially, the as-prepared TiO2 powders by hydrothermal treatment for 7 h shows the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2 times.  相似文献   

13.
Macroporous nanocrystalline (Sr,Pb)TiO3 solid solutions were prepared by a facile self-propagating combustion method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectrum (EDS) and X-ray photoelectron spectroscopy (XPS). (Sr,Pb)TiO3 solid solutions showed enhanced photocatalytic activity for the degradation of methyl orange (MO) than pure SrTiO3 and an optimum performance was observed for Sr29/32Pb3/32TiO3. The possible mechanism for the enhanced photocatalytic activity on (Sr,Pb)TiO3 solid solutions was proposed.  相似文献   

14.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

15.
Photocatalytic experiment results under visible light demonstrate that both TiO2 and Cu2O have low activity for brilliant red X-3B degradation and neither can produce H2 from water splitting. In comparison, TiO2/Cu2O composite can do the both efficiently. Further investigation shows that the formation of Ti3+ under visible light has great contribution. The mechanism of photocatalytic reaction is proposed based on energy band theory and experimental results. The photogenerated electrons from Cu2O were captured by Ti4+ ions in TiO2 and Ti4+ ions were further reduced to Ti3+ ions. Thus, the photogenerated electrons were stored in Ti3+ ions as the form of energy. These electrons trapped in Ti3+ can be released if a suitable electron acceptor is present. So, the electrons can be transferred to the interface between the composite and solution to participate in photocatalytic reaction. XPS spectra of TiO2/Cu2O composite before and after visible light irradiation were carried out and provided evidence for the presence of Ti3+. The image of high-resolution transmission electron microscopy demonstrates that TiO2 combines with Cu2O tightly. So, the photogenerated electrons can be transferred from Cu2O to TiO2.  相似文献   

16.
B-doped together with Ag-loaded mesoporous TiO2 (Ag/B–TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B–TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B–TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B–TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.  相似文献   

17.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres.  相似文献   

18.
Copper-doped titania with variable Cu/Ti ratios have been prepared via a simple aqueous-phase method at 85 °C. The obtained products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectra analysis. The photocatalytic properties of the products were tested by photocatalytic degradation of aqueous brilliant red X-3B solution. The results showed that the sample with 2% copper doping has the best photocatalytic activity, which is 3 times that of undoped rutile titania. The effect of the doped copper on the structure and property of TiO2 has also been discussed.  相似文献   

19.
Er 3+-doped TiO 2-SiO 2 powders are prepared by the sol-gel method,and they are characterized by high resolution transmission electron microscopy (HR-TEM),X-ray diffraction (XRD) spectra,and Raman spectra of the samples.It is shown that the TiO 2 nanocrystals are surrounded by an SiO 2 glass matrix.The photoluminescence (PL) spectra are recorded at room temperature.A strong green luminescence and less intense red emission are observed in the samples when they are excited at 325 nm.The intensity of the emission,which is related to the defect states,is strongest at the annealing temperature of 800 C.The PL intensity of Er 3+ ions increases with increasing Ti/Si ratio due to energy transfer between nano-TiO 2 particles and Er 3+ ions.  相似文献   

20.
Sol-gel nanostructured titania materials have been reported to have applications in areas ranging from optics via solar energy to gas sensors. In order to enhance the photocatalytic activity, there are many studies regarding the doping of titanium dioxide (TiO2) material with either non-metals (S, C, N, P) or metals (Ag, Pt, Nd, Fe). The present work has studied some un-doped and Pd-doped sol-gel TiO2 materials (films and gels), with various surface morphologies and structures, obtained by simultaneous gelation of both precursors Ti(OEt)4 and Pd(acac)2. Their structural evaluation and crystallization behavior with thermal treatment were followed by DTA/TG analysis, infrared (IR) spectroscopy, Fourier transform infrared (FTIR), spectroellipsometry (SE), X-ray diffraction (XRD) and atomic force microscope (AFM). The influence of Pd on TiO2 crystallization for both supported and un-supported materials was studied (lattice parameters, crystallite sizes, internal microstrains). The changes in the optical properties of the TiO2-based vitreous materials were correlated with the changes of the structure. The hydrophilic properties of the films were also connected with their structure, composition and surface morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号