首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compounds U4Rh13Si9 and U4Ir13Si9 crystallize with the orthorhombic Er4Ir13Si9-type structure that contains three non-equivalent positions of uranium atoms. Their magnetic, electrical transport and thermal properties were studied down to liquid helium temperature in magnetic fields up to 9 T. Both compounds have been found to order antiferromagnetically at low temperatures and to exhibit complex magnetic behavior in the ordered state. Some features characteristic of spin fluctuators (U4Rh13Si9) and Kondo lattices (U4Ir13Si9) indicate that the two ternaries studied are novel strongly correlated electron systems.  相似文献   

2.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

3.
The infrared (IR) and 57Fe-Mössbauer spectra of Fe3IIFe4III(AsO4)6 were recorded and analyzed on the basis of its structural characteristics. The IR spectrum presents a high complexity, showing an important number of bands and splittings, as a consequence of the presence of three structurally independent AsO43− groups. The analysis of the four quadrupole signals shown by the Mössbauer spectrum allowed to attain a detailed insight into the cation distribution over the available crystallographic sites. The alternating current susceptibility measurements indicate a paramagnetic to ferrimagnetic transition in the material at about 59 K.  相似文献   

4.
Structural, magnetic, heat capacity, electrical and thermal transport properties are reported on polycrystalline Ba8Ni6Ge40. Ba8Ni6Ge40 crystallizes in a cubic type I clathrate structure with unit cell a=10.5179 (4) Å. It is diamagnetic with susceptibility χdia=−1.71×10-6 emu/g Oe. An Einstein temperature 75 K and a Debye temperature 307 K are estimated from heat capacity data. It exhibits n-type conducting behavior below 300 K. It shows high Seebeck coefficients (−111×10-6 V/K), low thermal conductivity (2.25 W/K m), and low electrical resistivity (8.8 mΩ cm) at 300 K.  相似文献   

5.
Physical properties of polycrystalline samples of CeCuxGa4−x (x = 0.2–1.4), crystallizing in the tetragonal BaAl4-type structure (space group I 4/mmm), were studied by means of X-ray powder diffraction, magnetization, specific heat, electrical resistivity and magnetoresistivity measurements in wide temperature and magnetic fields ranges. The unit-cell volume of the system was found to decrease with increasing x (in total by about 4%) but the magnetic moments of Ce3+ ions remain localized in the whole x-range studied. The alloys exhibit ferromagnetic order at low temperatures, which manifests itself as distinct and relatively sharp anomalies in all the temperature characteristics measured. The ordering temperature decreases with increasing the Cu content from 5.5(1) K for x = 0.2 down to 1.35(5) K for x = 1.4, and the electrical transport properties of the system show some features characteristic of Kondo lattices.  相似文献   

6.
Electronic structures of the rare earth trifluorides CeF3 () and TbF3 (Pnma) were examined by high-resolution valence-band X-ray photoelectron spectroscopy (VB-XPS) and all-electron periodic-crystal DFT theory including the spin-polarization (SP) combined with spin-orbit (SO) coupling using a second-variational treatment. Calculations using the Perdew-Burke-Ernzerhof (PBE) functional and the LDA+U method were carried out and compared. The results show that a complete analysis does require a full DFT-SP-SO treatment to obtain a quantitative account for the observed VB-XPS spectra, with an additional insight of the theory with regard to the nature of the topmost orbitals, and the bonding-antibonding character of orbitals within the VB and sub-VB levels. The band structure at the bottom of the conduction band (BCB) shows a strong dispersion in TbF3 but not in CeF3, predicting photoconductivity in TbF3.  相似文献   

7.
EuCo2(Si1−xGex)2, x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 samples were synthesised by induction melting followed by annealing at 900 °C and rapid quenching. X-ray powder diffraction and Auger electron spectroscopy studies revealed that solid solutions are formed only for x?0.2 and x?0.7. Magnetic susceptibility investigations for the solid solutions revealed a dominant divalent europium valence state in the germanium-rich samples and a dominant trivalent europium component in the silicon-rich samples. In the germanium-rich samples, a long-range antiferromagnetic ordering was observed. In all samples studied, additional magnetic transitions at various temperatures were detected, which could be attributed to small clusters containing different europium chemical surrounding from that in the predominant phase.  相似文献   

8.
The crystal structure of U6Fe5Al8Si9 was re-determined by electron crystallography, using selected area electron diffraction (SAED) and high resolution (HRTEM) images, taken along the [0 0 1] direction. The obtained results are very similar to those found previously by X-ray powder diffraction. The differences between the atomic positions found by SAED and HRTEM images and those found by X-ray powder diffraction were 0.11 and 0.08 Å, respectively.  相似文献   

9.
10.
This paper reports on multiferroic properties of Ho substituted BiFeO3 (Bi1−xHoxFeO3) ceramics. It is observed that for x=0.15, a prominent ferroelectric loop is seen at 300 K even if the system remains in rhombohedral (R3c) phase without appearance of any observable impurity phases. A well shaped M-H loop is observed at 10 K for x=0.15. However it showed ferromagnetism, confirming the contribution of Ho3+ towards enhancement of ferromagnetic properties of BiFeO3 at 300 K. Suppression of impurity phases of pure BiFeO3 bulk ceramic favors the reduction of mobile oxygen vacancies and reduces leakage current, due to which ferroelectric properties of BiFeO3 is enhanced. We argue that Ho substitution at Bi site is likely to suppress the spiral spin modulation and at the same time increase the canting angle, which favors enhanced multiferroic properties. XRD, SEM, magnetization, polarization and chemical bonding analysis measurements were carried out to explain the multiferroic behavior.  相似文献   

11.
Neutron and X-ray diffraction studies on the Tb2Ni3Si5 single crystal have been done to investigate its crystal modulation and magnetic properties. The modulated single crystal is constructed by the TbNiSi2 (CeNiSi2-type Cmcm) and the Tb2Ni3Si5 (U2Co3Si5-type Ibam) lattices. The relationship between the two lattices is described as direction of the b112-axis coincides with the a235-axis. The crystal modulation gives significant effects on magnetism. Each of the two lattices takes complex antiferromagnetism with multiplex propagation vectors.  相似文献   

12.
The electronic structure and magnetic properties of the (2-amino-5-chloropyridinium)2CuBr4 compound were studied using the full potential augmented plane wave plus local-orbitals method (FP-APW+lo) within density functional theory. The Cu atoms are the magnetic centers, magnetic moments originate mainly from the Cu 3d and Br 4p states, leading to a total magnetic moment of 1.00 μB per molecule. There is an important hybridization between the Cu 3d and Br 4p states, which causes the magnetic interactions between the Cu centers to pass through the Br p-orbitals near the Cu atoms. According to the self-consistent total energies, it was found that in the ground state there exist antiferromagnetic interactions for both intraplanar and interplanar magnetic exchange, but the latter is much weaker than the former.  相似文献   

13.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

14.
Nano-crystallites of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 NASICON type material are prepared by means of solid-state reaction of a stoichiometric mixture after milling it for 22 and 55 h. The milling reduces the average crystallite size of the ceramic to 80 and 60 nm, respectively. Mechanical milling changes structural parameters and the strain induced at the grain-boundaries plays a major role in improving electrical conductivity. An order of magnitude increase in electrical conductivity is observed in the material milled for 55 h compared to the unmilled material, which is also reflected in permittivity loss. Modulus and permittivity representations substantiate the constriction effect of grain-boundaries observed in the complex impedance representation.  相似文献   

15.
We present Compton profiles of the GdAl2 compound and its constituents using a 20Ci 137Cs Compton spectrometer. The experimental Compton data have been analysed using theoretical data obtained from the spin polarised relativistic Korringa–Kohn–Rostoker (SPR-KKR) method and also the charge transfer on the formation of the compound. Both the experimental and the SPR-KKR theoretical Compton data support a charge transfer from Al→Gd in GdAl2, which is in accordance with the conclusions drawn from the partial, total and integrated density of states of GdAl2 and its constituents.  相似文献   

16.
Magnetic and electrical properties of well-characterized Gd0.5Ba0.5CoO2.9 have been studied carefully in order to compare them with those of other analogous cobaltates of the type Ln0.5A0.5CoO3 (Ln=La, Nd and A=Sr, Ba) which are ferromagnetic. The results show that Gd0.5Ba0.5CoO2.9, which has A-site cation ordering at room temperature, does not become a genuine ferromagnet at low temperatures, but the ferromagnetic interactions observed at 280 K give over to an antiferromagnetic (AFM) state on cooling to 230 K. The AFM state is rendered ferromagnetic on the application of high magnetic fields. The properties can be understood on the basis of phase separation induced by the large A-site cation-disorder, arising from the size mismatch.  相似文献   

17.
The electronic structure and related physical properties of crystalline ammonium sulfate, (NH4)2SO4, have been studied using the first principles code CRYSTAL06 at the B3LYP level of theory. The title compound has been found to possess one stable and three metastable configurations, all within the polar space group Pna21 (no. 33). Two of the metastable polymorphs are newly predicted and have not yet been observed experimentally. The different configurations show considerably varying magnitudes of the spontaneous polarization Ps. All coefficients of the elastic stiffness tensor, ckl, and elasto-electrical tensor, eki have been calculated for the first time and have been found to agree satisfactorily with experimental data, as far as available.  相似文献   

18.
The Fe alloy-ferrite composites Fe-Co/Fe3O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 in a concentrated and boiling KOH solution. The Fe alloy and ferrites are prepared in aqueous solution without any templet and surfactants at low temperature. Their structures and magnetic properties are investigated by X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). From the results of XRD, it is shown that the samples have b.c.c and f.c.c structure of Fe, and the spinel structures of the ferrite before calcinations; the samples have b.c.c and spinel structures after calcinations at 300 °C; and the samples have only f.c.c structure and the spinel structures calcined at 500 °C.  相似文献   

19.
Magnetoelectric composites of Ni0.8Co0.1Cu0.1Fe2O4 and Lead Zirconate Titanate (PZT) were prepared by using conventional ceramic method. The measured values of saturation magnetization (Ms) and magnetic moments (μB) are in accordance with the volume fraction of ferrite content in the composite. The dielectric constant of the composites decreases with frequency. The plots of dielectric constant () against temperature (T) show a peak at their respective transition temperatures. The ME output was measured by varying dc bias magnetic field. A large ME output signal of 776 mV/cm was observed for 35% ferrite +65% ferroelectric composite. The magnetoelectric (ME) response is found to be dependent on the content of ferrite phase.  相似文献   

20.
We report angle-resolved photoemission spectroscopy studies on Sr2RuO4. We observe multiple-bosonic mode coupling in the α and β band dispersions. To extract the self-energy from the data for which the usual fitting methods do not work well, we propose a scheme that exploits the relation between the spectral intensity and self-energy, termed as relative self-energy. The relative self-energy obtained in that way contains important features of the self-energy. We observe not only the features that can be obtained from the band dispersions but also additional features that were not seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号