首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yttrium aluminum garnet (YAG) particles doped with Tb3+ or double doped with Tb3+ and Ce3+ were prepared by spray pyrolysis and characterized by photo- and cathode-luminescence. It was tried to incorporate a broad band of Ce3+ activator into the line peaks of Tb3+ in YAG host without the reduction of emission intensity. Ce-codoped YAG:Tb particles showed a broad band emission due to the d-f transition of Ce3+ and a reduction in the intensity of emission peaks due to 5D3-7Fj (j=3, 4, 5, 6) transition of Tb3+ when they were excited by the ultraviolet light of 270 nm. These results supported that an effective energy transfer occurs from Tb3+ to Ce3+ in YAG host. Codoping Ce3+ ions greatly intensified the excitation peak at 270 nm for the emission at 540 nm of Tb3+, which means that more lattice defects, involving in the energy absorption and transfer to Tb3+, are formed by the Ce3+ codoping. The finding gives a promising approach for enhancing the luminescence efficiency.  相似文献   

2.
Thermoluminescence (TL) and photoluminescence studies have been carried out on CaSO4:Tb, CaSO4:Ce and CaSO4:Tb,Ce phosphors with the aim of studying energy transfer process in the CaSO4:Tb,Ce phosphor. CaSO4:Tb,Ce shows TL peaks at 150, 220, 320 and 400°C. Changes in Tb and Ce concentrations influence the relative heights of these glow peaks. Co-doping with 0.1 mol% of Ce in CaSO4:Tb enhances the sensitivity of 320oC TL peak by a factor of 15. Fluorescence results show that there is energy transfer from Ce to Tb ion. The defect centres formed in CaSO4:Tb,Ce phosphor are studied using electron spin resonance technique. The 320oC glow peak correlates with a centre (SO3radical) with g-values: g||=2.0061 and g=2.0026.  相似文献   

3.
The optical properties of Ba1.6Ca0.4P2O7 doped with Ce3+ and Tb3+ are investigated. Under excitation at 280 nm the emission spectrum of Ba1.6Ca0.4P2O7:Ce3+ consists of a peak at 370 nm and a shoulder at the longer wavelength side. The emission spectra of Ba1.6Ca0.4P2O7:Tb3+ shows the well-known emission lines due to 5D4-7FJ transitions of Tb3+. The green emissions of Tb3+ ions are enhanced upon UV excitation through energy transfer from Ce3+ to Tb3+ ions. The efficiency of such an energy transfer is estimated based on spectroscopic data. The dependence of photoluminescence (PL) intensities of Ce3+ and Tb3+ emissions on Ce3+ or Tb3+ concentrations in the systems (Ba1.6Ca0.4P2O7:0.04Ce3+,xTb3+ and Ba1.6Ca0.4P2O7:xCe3+,0.04Tb3+) and the temperature dependence of PL emission spectra of Ba1.6Ca0.4P2O7:0.06Ce3+,0.04Tb3+ is also investigated.  相似文献   

4.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

5.
Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipole-dipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.  相似文献   

6.
YVO4:Eu3+-based red-emitting phosphors with the compositions of Y0.95−xVO4:0.05Eu3+,xBi3+ (x=0.01, 0.03, 0.05, 0.07 and 0.09) and Y0.90(V1−zPz)O4:0.05Eu3+,0.05Bi3+ (z=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized by the high temperature solid-state method. The as-prepared phosphors have the similar tetragonal phase structure and their morphologies varied with the relative content ratio of V to P. The photoluminescence spectra for the as-synthesized phosphors show that a dominant red emission line at around 619 nm, which is due to the Eu3+ electric dipole transition of 5D0-7F2, is observed under different excitation wavelengths (254 and 365 nm). Further, the emission intensities of 5D0-7F2 transition upon 365 nm excitation increase sharply owing to the Bi3+ doping. Energy transfer process, luminescent lifetime and quantum efficiency for the selected Y0.90(V1−yPy)O4:0.05Eu3+,xBi3+phosphors were also studied in detail.  相似文献   

7.
SrZnO2 phosphors have been synthesized by two new methods viz. carbonate decomposition at 1000 °C and combustion synthesis. Phosphors activated with Pb2+, Sm3+, Tb3+, Bi3+ and Pr3+ could be prepared in one step using the combustion synthesis. Characteristic emission and excitation were observed for Bi3+. For the remaining activators excitation spectra always contained a band at 283 nm. Presence of this band for all these different types of activators was interpreted as host sensitization.  相似文献   

8.
Orange-emissive Ce3+/Eu2+ co-doped Sr3Al2O5Cl2 phosphors were synthesized by a solid-state reaction. The large overlap between the emission spectrum of blue Sr3Al2O5Cl2:Ce3+ and the excitation spectrum of orange Sr3Al2O5Cl2:Eu2+, and the shortening trend in lifetime of Ce3+ donors with increasing Eu2+ concentration in Sr3Al2O5Cl2:Ce3+, Eu2+ provide the strong evidence of energy transfer from Ce3+ to Eu2+ ions. It supports that the orange emission intensity of the optimal co-doped phosphor is 1.5 times stronger than that of single Eu2+-doped one. The Sr3Al2O5Cl2:Ce3+, Eu2+ phosphor is a promising orange-emitting phosphor for warm-white-light-emitting diode because of its effective excitation in the near ultraviolet range.  相似文献   

9.
In this study, a solution combustion method was used to prepare green emitting Ce3+–Tb3+ co-activated ZnAl2O4 phosphor. The samples were annealed at 700 °C in air or hydrogen atmosphere to improve their crystallinity and optical properties. X-ray diffraction study confirmed that both as-prepared and post-preparation annealed samples crystallized in the well known cubic spinel structure of ZnAl2O4. An agglomeration of irregular platelet-like particles whose surfaces were encrusted with smaller spheroidal particles was confirmed by scanning electron microscopy (SEM). The fluorescence data collected from the annealed samples with different concentrations of Ce3+ and Tb3+ show the enhanced green emission at 543 nm associated with 5D47F5 transitions of Tb3+. The enhancement was attributed to energy transfer from Ce3+ to Tb3+. Possible mechanism of energy transfer via a down conversion process is discussed. Furthermore, cathodoluminescence (CL) intensity degradation of this phosphor was also investigated and the degradation data suggest that the material was chemically stable and the CL intensity was also stable after 10 h of irradiation by a beam of high energy electrons.  相似文献   

10.
The photoluminescence (PL) spectra, PL excitation spectra, color coordinates, and X-ray diffraction spectra are reported for SrGa2S4:Sn,Re(=Ce and Gd, respectively) phosphors. By mixing SrGa2S4:Sn,Ce phosphors with different Ce3+ concentrations, white emissions can be obtained under the excitation of a 340-nm UV LED. Emissions in the green to yellow color range can be obtained from SrGa2S4:Sn,Gd phosphors. The rare earth ions enhance the green emission band, which peaks at 534 nm, instead of the yellow one. The origin of this enhancement is discussed. The resonant energy transfer rates are estimated in the cases from Ce3+ to the green and yellow centers of Sn2+ and between the yellow centers and the green centers.  相似文献   

11.
ZrO2:Tb3+ and BaZrO3:Tb3+ powders are prepared by combustion synthesis method and the samples were further heated to 500, 700 and 1000 °C to improve the crystallinity of the materials. The structure and morphology of materials have been examined by X-ray diffraction, Raman spectra and scanning electron microscopy. It is remarkable that all the samples of ZrO2:Tb3+ and BaZrO3:Tb3+ have similar morphology. These images exhibited homogeneous aggregates of varying shapes and sizes, which are composed of a large number of small cuboids and broken cuboids. The cuboids and broken cuboids size of all the samples are less than 0.5 μm. Photoluminescence for both materials increases with increase of temperature and found maximum for the samples heated to 1000 °C with 5 mole% doping of Tb3+ ions. Luminescence is almost double for the zirconia compared to that of barium-zirconate.  相似文献   

12.
Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ powders were prepared by a combustion method. Their structures were determined using X-ray diffraction. UV-visible absorption and photoluminescence spectra were investigated for Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ at different annealing temperatures and different doping concentrations. The emission spectra of all samples presented the characteristic emission narrow lines arising from the 4G5/26HJ transitions (J=5/2, 7/2, and 9/2) of Sm3+ ions upon excitation with UV irradiation. The emission intensity of Sm3+ ions was largely enhanced with introducing Bi3+ ions into Gd2O3:Sm3+ and the maximum occurred at a Bi3+ concentration of 0.5 mol%. The relevant mechanisms were discussed with the sensitization theory by Dexter and the aggregation behavior of Bi3+ ions.  相似文献   

13.
Room temperature steady and time resolved emission spectra of LiIn1−xTmx(WO4)2 (where thulium concentration is 0, 0.5, 1, 5 and 10 at%) blue phosphors, under UV excitation energy have been investigated. The concentration quenching effect on the blue emission, due to the (WO4)−2 groups and 1G43H6 emission transition of Tm3+ were studied. Two energy transfer mechanisms are shown. The first takes place between excited (WO4)−2 groups and the 1G4 energy level of Tm3+, and is mainly analyzed by phonon-assisted energy transfer. The second mechanism is due to an energy transfer from the excited Tm3+ ions to the surrounding ground state Tm3+ ions. The non-exponential decay curves of the 1G4 level observed for higher concentrations are analyzed by the Inokuti–Hirayama model. We think that the quenching effect between Tm3+ ions is mainly linked to the dipole–dipole interactions.  相似文献   

14.
Orange-emitting SrS:Eu2+ phosphors were coated with nanoscale SiO2 and their photoluminescence (PL) degradation behavior in moist air was investigated. The SiO2 coating was obtained by sol-gel process using diethoxydimethylsilane (DEDMS) and the coating content was varied from 0.5 to 2 wt%. The coatings were composed of a uniform, continuous, and amorphous SiO2 layer of 30-50 nm thickness and the coating thickness was not varied significantly with the coating content. No peak shift and no decrease of PL intensity were observed after coating. The PL intensity of the coated phosphors decreased to ∼75% of the original value after 10 h exposure to moist air, while the uncoated phosphor decreased to ∼33%, which indicates the improved moisture resistance of the nanoscale SiO2 coated SrS:Eu2+ phosphors.  相似文献   

15.
The co-precipitation reaction soft chemistry method was employed to prepare fine YPO4:Dy3+ phosphor particles calcined at 950 °C. Adjusting appropriate pH and introducing lithium may greatly affect the particle size of the product and further affect the luminescence intensity. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron micrograph (TEM) and photoluminescence (PL) spectroscopy. The obtained YPO4 nanocrystals appeared to be spherical with some agglomeration and their sizes ranged from 20 to 40 nm. The characteristic transitions of Dy3+ due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) were detected in the emission spectra.  相似文献   

16.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

17.
La2TeO6:Eu3+ nanophosphors were prepared by Pechini sol-gel process, using lanthanide nitrates and telluric acid as precursor. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TG), photoluminescence spectra (PL) and fluorescence lifetime were used to characterize the resulting phosphors. The results of XRD indicate that all samples crystallized completely at 1023 K and are isostructural with the orthorhombic La2TeO6. SEM study reveals that the samples have a strong tendency to form agglomerates with an average size ranging from 50 to 80 nm. The photoluminescence intensity and chromaticity were improved for excitation at 254 and 395 nm. The optimized phosphor La1.80Eu0.10TeO6 could be considered as an efficient red-emitting phosphor for solid-state lighting devices based on GaN LEDs.  相似文献   

18.
ZnAl2O4:Mn green light emitting powder phosphors have been prepared by urea combustion technique involving furnace temperatures about 500 °C in a short time (<5 min). The prepared powders were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectrometry and the surface area measurements by a Brunauer-Emmet-Teller (BET) adsorption isotherms. The EPR spectrum exhibits a resonance signal at g≈2.0, which shows a six-line hyperfine structure (hfs). From the EPR spectra the spin-Hamiltonian parameters have been evaluated at room temperature as well as at 110 K. EPR and photoluminescence (PL) studies revealed that manganese ions were present in divalent state and the site symmetry around Mn2+ ions is distorted tetrahedral. The spin concentration (N), the paramagnetic susceptibility (χ) and the zero-field splitting parameter (D) have been evaluated and discussed. The green emission at 511 nm in ZnAl2O4:Mn phosphor is assigned to a transition from the upper 4T16A1 ground state of Mn2+ ions.  相似文献   

19.
Pulsed laser deposited ZnS bare and SnO2 coated ultra thin films were subjected to prolonged electron beam bombardment with 2 keV energy and a steady 44 mA/cm2 current density, in 1 × 10−6 Torr O2 pressure backfilled from a base pressure of 3 × 10−9 Torr at room temperature. Auger electron spectroscopy (AES) was used to monitor changes of the surface chemical composition of both the bare and coated phosphor films during electron bombardment. Degradation was manifested by the decrease of sulphur and accumulation of oxygen on the surface of the bare phosphor. However, with the SnO2 coating this phenomenon was delayed until the protective SnO2 was depleted on the surface through dissociation and reduction.  相似文献   

20.
In this paper, europium-doped gadolinium phosphor, which is a potentially bifunctional material with both fluorescent and magnetic properties, has been prepared in a one-step procedure via flame spray pyrolysis, and its crystal structure, morphology, and PL intensity were investigated. All the prepared phosphors were submicron-sized with spherical shapes and either a pure cubic or pure monoclinic phase. In order to observe the effects of temperature on the crystal phases of the prepared phosphors, we applied a H2 vs. N2/O2 diffusion flame, with the maximum flame temperature ranging from Tmax=1375 to 2050 K. The temperature profiles under various flame conditions are also reported herein to further elucidate the rapid synthesis process. The PL intensity in the cubic phase improved linearly with increasing flame temperature until the transition to a monoclinic phase. The peak of the photoluminescence(PL) spectrum from the phosphors prepared at Tmax=1733 K in the cubic phase was narrower and twice as strong as the peak of the PL spectrum from the phosphors prepared at Tmax=2050 K in the monoclinic phase. This paper provides important data showing the relationship between the synthesis temperature and the phase transition in Gd2O3:Eu in the continuous one-step use of flame spray pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号