首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A density functional investigation into the structure and vibrational properties of the recently synthesized, novel, Zn(I)-containing species decamethyldizincocene has been performed. Our analysis is in agreement with the general structural properties of the experimental results. We have corroborated the experimental geometry as a true minimum on the global molecular energy surface, confirmed the experimental hypothesis that the Zn atoms are in a Zn(I) state, and provided a detailed analysis of the experimentally undefined Zn-dominant IR and Raman spectral bands of this unusual Zn(I) species.  相似文献   

2.
We present a density functional theory for inhomogeneous fluids at constant external pressure. The theory is formulated for a volume-dependent density, n(r,V), defined as the conjugate variable of a generalized external potential, nu(r,V), that conveys the information on the pressure. An exact expression for the isothermal-isobaric free-energy density functional is obtained in terms of the corresponding canonical ensemble functional. As an application we consider a hard-sphere system in a spherical pore with fluctuating radius. In general we obtain very good agreement with simulation. However, in some situations a peak develops in the center of the cavity and the agreement between theory and simulation becomes worse. This happens for systems where the number of particles is close to the magic numbers N=13, 55, and 147.  相似文献   

3.
4.
We present an extension of Hohenberg-Kohn-Sham density functional theory to the domain of complex local potentials and complex electron densities. The approach is applicable to resonance (Siegert) [Phys. Rev. 56, 750 (1939)] states and other scattering and transport problems that can be described by a normalized state of a Hamiltonian containing a complex local potential. Such Hamiltonians are non-Hermitian and their eigenvalues are in general complex, the imaginary part being inversely proportional to the lifetime of the system. The one-to-one correspondence between complex local potentials nu and complex electron densities rho is established provided that the complex variables are sufficiently close to real local potentials and densities of nondegenerate ground states. We show that the exchange-correlation functionals, contributing to the complex energy, are determined through analytic continuation of their ground-state-theory counterparts. This implies that the exchange-correlation effects on the lifetime of a resonance are, under appropriate conditions, already determined by the functionals of the ground-state theory.  相似文献   

5.
Hydrogen‐bonded formaldehyde oligomers (dimer to pentamer) are studied using density functional theory (DFT), the B3LYP method, and the 6‐311+G* basis set. Many‐body interaction energies are obtained to study the contribution of many‐body terms to binding energy. The basis set superposition error (BSSE)‐corrected total energies are ?229.08170, ?343.61410, ?458.16660, and ?572.70901 hartrees for dimer, trimer, tetramer, and pentamer, respectively, with corresponding binding energies ?2.55, ?4.86, ?6.99, and ?9.49 kcal/mol. Two‐body energies have been found to contribute significantly to the total binding energy in dimer to pentamer, whereas higher‐order interaction energies are negligible. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

6.
BnC clusters (n = 3–10) were studied at the density functional theory (DFT) (B3LYP)/6‐311G** level of theory. The calculations predicted that the most stable configurations of the BnC clusters are the (n + 1)‐membered cyclic structures. For boron–carbon clusters, the configurations containing greater numbers of three‐membered boron rings are more favorable, except for the B7C and B9C clusters. Through molecular orbital analysis of these BnC clusters, we have concluded that π‐electron delocalization plays a crucial role in the stability of n + 1‐membered cyclic structures. In this paper, the relative stability of each cluster is discussed based on their single atomic‐binding energies. The capability of clusters to obtain or lose an electron was also discussed, based on their vertical electron detachment energies (VDEs), adiabatic electron detachment energies (ADEs), vertical electron affinities (VEAs) and adiabatic electron affinities (AEAs). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The field theoretical background of relativistic density functional theory is emphasized and its consequences for relativistic Kohn-Sham equations are shown. The local density approximation for the exchange energy functional is reviewed and the importance of relativistic corrections for an accurate representation of the exchange functional is demonstrated. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
9.
Photoionization dynamics of the RNA base uracil is studied in the framework of density functional theory. The photoionization calculations take advantage of a newly developed parallel version of a multicentric approach to the calculation of the electronic continuum spectrum which uses a set of B-spline radial basis functions and a Kohn-Sham density functional Hamiltonian. Both valence and core ionizations are considered. Scattering resonances in selected single-particle ionization channels are classified by the symmetry of the resonant state and the peak energy position in the photoelectron kinetic energy scale; the present results highlight once more the site specificity of core ionization processes. We further suggest that the resonant structures previously characterized in low-energy electron collision experiments are partly shifted below threshold by the photoionization processes. A critical evaluation of the theoretical results provides a guide for future experimental work on similar biosystems.  相似文献   

10.
We present a framework for embedding a highly accurate coupled-cluster calculation within a larger density functional calculation. We use a perturbative buffer to help insulate the coupled-cluster region from the rest of the system. Regions are defined, not in real space, but in Hilbert space, though connection between the two can be made by spatial localization of single-particle orbitals. Relations between our embedding approach and some similar techniques are discussed. We present results for small sample systems for which we can extract essentially exact results, demonstrating that our approach seems to work quite well and is generally more reliable than some of the related approaches due to the introduction of additional interaction terms.  相似文献   

11.
We propose a density functional theory to describe adsorption of Lennard-Jones fluid in pillared slit like pores. Specifically, the pillars are built of chains that are bonded by their ends to the opposite pore walls. The approach we propose combines theory of quenched-annealed systems and theory of nonuniform fluids involving chain molecules. We compare the results of theoretical predictions with grand canonical ensemble Monte Carlo simulations and compute theoretical capillary condensation phase diagrams for several model systems.  相似文献   

12.
Density functional theory was employed to investigate the adsorption site and hyperfine interactions of nitric oxide adsorbed in Na-LTA (previous name NaA) zeolite. Three different cluster models of increasing complexity were used to represent the zeolite network: (1) a six-membered ring terminated by hydrogen atoms with one sodium ion above the ring, (2) as model 1 with the addition of three sodium ions located at the centers of three imagined four-membered rings adjacent to the six-membered ring, and (3) as model 2 with the addition of the three four-membered rings adjacent to the six-membered ring. Calculations on the largest system (model 3) showed very good agreement with measured electronic Zeeman interaction couplings, 14N hyperfine coupling tensors, and 23Na hyperfine and nuclear quadruple coupling tensors of the S = 1/2 Na+...N-O adsorption complex when the position of the sodium ion was relaxed. The optimized geometry of the complex agreed nicely with that estimated experimentally, except for the Na-N distance, where the present results indicate that the distance deduced from previous ENDOR experiments may be underestimated by as much as 0.5 angstroms.  相似文献   

13.
The influence of α-substitution in the structure, bonding and thermochemical properties of trifluoromethyl-pyridinol derivatives and their protonated counterparts has been studied by means of density functional theory. The geometries of the neutral and protonated species were optimized at the B3-LYP/6-311G(d,p) level of theory. Final energies were obtained through single point B3-LYP/6-311+G(3df,2p) calculations.The relative orientation of the different substituents within the heterocycle ring favours the formation of unexpected intramolecular hydrogen bonds (IHB), which have been characterized by means of the Atoms in Molecules theory of Bader. Although weak, these IHB are of great importance for understanding the gas phase structure and the thermodynamical properties of these compounds. Surprisingly, most of the substituted investigated pyridinols present proton affinities below or close to that calculated for the unsubstituted pyridine molecule. Only pyridinols bearing strong σ or π donor activating groups show proton affinities greater than that of pyridine.  相似文献   

14.
The collective electronic response of NanKn clusters has been studied for some model structures. In their low-temperature lowest-energy structure, those clusters have all the K atoms on the surface. The collective oscillation frequencies for clusters with the K atoms segregated to the surface are red-shifted with respect to the corresponding frequencies for isomers with a very similar underlying skeleton but with the Na atoms segregated to the surface. The collective frequency varies smoothly with respect to the degree of relative segregation. These results may be useful in the analysis of the collective response of large alloy clusters and microcrystals. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Three-photon absorption probabilities delta(3PA) have been calculated through application of a recently derived method for cubic response functions within density functional theory (DFT). Calculations are compared with Hartree-Fock (HF) and with a coupled cluster hierarchy of models in a benchmarking procedure. Except for cases having intermediate states near resonance, density functional theory is demonstrated to be in sufficient agreement with the highly correlated methods in order to qualify for predictions of delta(3PA). For the larger systems addressed, a set of acceptor A and donor D substituted pi-conjugated systems formed by trans-stilbene and dithienothiophene (DTT), we find noticeable differences in the magnitude of delta(3PA) between HF and DFT, although similar trends are followed. It is shown that the dipolar structures, TS-AD and DTT-AD, have substantially larger delta(3PA) than other types of modifications which is in accordance with observations for two-photon absorption. This is the first application of density functional theory to three-photon absorption beyond the use of few-state models.  相似文献   

16.
Polyatomic density functional theory is applied to a binary polymer blend. The polymer reference interaction site model (PRISM) liquid state theory provides the homogeneous state correlation functions necessary for the application of density functional theory. An effective chi parameter can be recognized from the density functional expression; however, the phase separation criteria does not depend solely upon the chi parameter, rather it depends upon various combinations of the species-dependent direct correlation functions of the blend. The Flory-Huggins chi parameter along with the associated phase diagram is obtained when the monomer volumes of the blend species are equal and for a range of monomer-monomer attractive interactions. Calculations are performed both with and without the assumption of incompressibility. The density functional theory along with the PRISM determined “input” predict that an isotopic polymer blend shows an upper critical solution temperature (UCST) phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Analytical studies have found an enrichment of the lighter Mo isotopes in oxic marine sediments compared to seawater, with isotope fractionation factors of -1.7 to -2.0 per thousand for Delta97/95Mosediment-seawater. These data place constraints on the possible identities of dissolved and adsorbed species because the equilibrium isotope fractionation depends on the energy differences between the isotopomers of the adsorbed species, minor dissolved species, and the dominant solution species, MoO42-. Adsorption likely involves molybdic acid, whose structure is indicated by previous studies to be MoO3(H2O)3. Here we used DFT calculations of vibrational frequencies to determine the isotope fractionation factors versus MoO42-. The results indicate that isotope equilibration of MoO42- with MoO3(H2O)3, yielding Delta97/95Momolybdic acid-molybdate=-1.33 per thousand, is most likely responsible for the isotope fractionation of Mo between oxic sediments and seawater. The difference between the calculated value of Delta97/95Momolybdic acid-molybdate for MoO3(H2O)3 and the value observed in natural sediments and experiments is probably due to effects of solvation and adsorption onto the manganese oxyhydroxide surface.  相似文献   

18.
The triplet excited state properties and photosensitization mechanisms of indigo were investigated based on density functional theory calculations. The solvent effects on the photosensitization mechanisms of indigo have also been considered. The thermodynamic feasibility of the possible 1O2 and O2·-photogeneration pathways by triplet excited state indigo in different solvents was explored, in order to gain some deeper insights into the photosensitization characters of the dye.   相似文献   

19.
Single-wall platinum nanotubes (SWPtN) were studied using spin-polarized density functional theory calculations. These nanotubes consist of 5-, 6-, and 8-Pt atoms coiling around the tubular axis forming 3.54–4.73 Å in diameter and 0.7–1.4 nm and infinite in length. Two types of wall structures, square and triangular, were investigated. The results show that triangular nanotubes are more stable. Our results suggest that it is also feasible to synthesize the 5- and 8-atom triangular nanotubes as the 6-atom Pt nanotubes were found experimentally. These SWPtN may provide a new dimension in the catalytic applications of platinum.  相似文献   

20.
The photodissociations of acetophenone (C6H5COCH3) have been investigated by density functional theory (DFT) approach. The experimentally observed three photodissociation channels were clarified from the theoretical calculations on the related reactants, transition states (TSs), and products. Two of the three channels, C6H5COCH3  C6H5CO + CH3 and C6H5COCH3  C6H5 + CH3CO, were assigned to Norrish I reactions on the potential energy surfaces (PESs) of the lowest triplet state (T1). And, the first one is more favorable for lower barrier. The subsequent decompositions, C6H5CO  C6H5 + CO and CH3CO  CH3 + CO, were also studied by the similar calculations as above. The third photodissociation channel, C6H5COCH3  C6H5CH3 + CO, has been documented on the PESs of the ground state (S0). The third one played a minor role in the photodissociations of C6H5COCH3 for much higher barrier than the first two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号