首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel sulfonated aromatic diacid, 3,3′‐disulfonyl‐4,4′‐dicarboxyldiphenylsulfone (DSDCDPS), was successfully synthesized from 4,4′‐dimethyldiphenylsulfone by sulfonation and further oxidation. A series of sulfonated polybenzimidazoles (sPBI‐SS) with various sulfonation degrees was prepared from DSDCDPS, 4,4′‐sulfonyldibenzoic acid and 3,3′‐diaminobenzidine by solution copolycondensation in poly(phosphoric acid). The chemical structure of the resulting sPBI‐SS was confirmed by FTIR and 1H NMR. The DSDCDPS‐based sPBI‐SS with the number‐average molecular weights of 32,000–55,000 were easy to dissolve in polar aprotic solvents such as DMF, DMSO, and DMAc, and could be cast into transparent, tough, and flexible membranes. The membranes presented good thermal stabilities (5% weight loss temperatures higher than 430 °C), and the thermal degradation activation energies of the sulfonic group of sPBI‐SS40 evaluated under N2 by both Ozawa and Kissinger methods were 266.06 and 264.79 kJ/mol, respectively. The membranes also exhibited high storage moduli, glass transition temperatures (above 238 °C) and tensile strengths (~80 MPa), in addition to water uptakes (22.3–25.2%) and low swelling degrees (<14.0%). © 2005 Wiley Periodicals, Inc. J Polym Sci A: Polym Chem 43: 4363–4372, 2005  相似文献   

2.
Currently, in biomedicine and biotechnology fields, there is a growing need to develop and produce biomolecules with a high degree of purity. To accomplish this goal, new purification methods are being developed looking for higher performance, efficiency, selectivity, and cost‐effectiveness. Affinity chromatography is considered one of the most highly selective methods for biomolecules purification. The purpose of this work is to explore a new type of a structurally simple ligand immobilized onto an agarose matrix to be used in affinity chromatography. The ligand in this study, 3,3′‐diamino‐N‐methyldipropylamine has shown low toxicity and low cost of preparation. Moreover, the ability of the ligand to be used in affinity chromatography to purify proteins and nucleic acids was verified. An increasing sodium chloride gradient, using salt concentrations up to 500 mM, was suitable to accomplish the purification of these biomolecules, meaning that the new support allows the recovery of target biomolecules under mild conditions. Thus, the 3,3′‐diamino‐N‐methyldipropylamine ligand is shown to be a useful and versatile tool in chromatographic experiments, with very good results either for proteins or supercoiled plasmid isoform purification.  相似文献   

3.
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004  相似文献   

4.
A classical model of “molecular machine,” which acts as an ON–OFF switch for 2,2′‐bipyridyl‐3,3′‐15‐crown‐5 ( L ), has been theoretically studied. It is highly important to understand the mechanism of this switch. The alkali‐metal cations (Na+ and K+) and W(CO)4 fragment are introduced to coordinate with the different active sites of L , respectively. The density functional theory (DFT) method is used for understanding the stereochemical structural natures and thermodynamic properties of all the target molecules at B3LYP/6‐31G(d) and SDD (Stuttgart–Dresden) level, together with the corresponding effective core potential (ECP) for tungsten (W). The fully optimized geometries have been performed with real frequencies, which indicate the minima states. The nucleophilicity of L has been investigated by the Fukui functions. The natural bond orbital analysis is used to study the intermolecular charge‐transfer interactions and explore the origin of the internal forces of the molecular switch. In addition, the binding energies, enthalpies, Gibbs free energies, and the cation exchange energies have been studied for L , W(CO)4 L , and their corresponding complexes. The properties of the complexes displayed by in presence or absence of the W(CO)4 fragment are also analyzed. The calculated results of allosterism displayed by L are in a good agreement with the experimental results. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

5.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

6.
An efficient synthetic procedure for the functionalized spiro[furan‐3,3′‐indoline] derivatives was successfully developed by domino reactions of N‐phenacylpyridinium bromides or N‐ethoxycarbonylmethylenepyridinium bromide with isatinylidene acetoacetate in the presence of triethylamine in ethanol at room temperature. The mechanism included sequential Michael addition of the in situ generated pyridinium ylide and intramolecular substitution of enolate.  相似文献   

7.
In this article, 3,3′,4,4′‐tetramethyldiphenylethane was obtained in 86.5% total yield by self coupling reaction of 3,4‐dimethylbenzyl chloride catalyzed by Cu/Cu2Cl2/PEG‐600 and promoted by iron in aqueous media and the starting material 3,4‐dimethylbenzyl chloride was prepared by chloromethylation of o‐xylene in CTAB micellar catalytic system. Compared to other synthetic methods, the improved method not only enhanced the yield, but also made the operating units easy workup. The mechanisms of the chloromethylation and the self coupling were proposed. The structures of the products were confirmed by Elemental analysis, 1H NMR and 13C NMR or compared with authentic samples.  相似文献   

8.
9.
Four L‐proline‐based phosphamides were designed and synthesized as a new kind of organocatalyst. Their catalytic activities for asymmetric direct aldol reactions were evaluated. Among them, 3a with 10 mol% catalyst loading afforded moderate to good yields and up to 99% ee.  相似文献   

10.
Yukun Zhang  Jun Zhu  Na Yu  Han Yu 《中国化学》2015,33(2):171-174
The 4,5‐methano‐L‐proline was used as chiral organocatalysts in direct asymmetric aldol reactions. Under the optimal conditions, excellent enantioselectivities (up to 99% ee) were obtained with high chemical yields (up to 95%) for a series of aldehydes using only 5 mol% catalyst loading. To show the practicality of the method, the reaction was tested at a large scale. The reaction was complete in 16 h, and the aldol product was obtained in 86% yield and 93% ee.  相似文献   

11.
A new chiral ligand 6,6′‐dimethoxy‐2,2′‐diaminobiphenyl was successfully prepared from 3‐nitrophenol via iodination, Ullmann coupling, and reduction. The resolving reagent (2R, 3R)‐ or (2S,3S)‐2,3‐di (phenylaminocarbonyl)tartaric acid was prepared from commercially available tartaric acid in large scale and was used to resolve the racemic 6,6′‐dimethoxy‐2,2′‐diaminobiphenyl. The chiral 6,6′‐ dimethoxy‐2,2′‐diaminobiphenyl obtained was proved to be enantiomerically pure.  相似文献   

12.
A simple, general and efficient method has been developed for synthesis of various β-enamino ketones and esters by reacting β-dicarbonyl compounds with amines using a catalytic amount of L-proline at room temperature under solvent-free conditions in excellent yields.  相似文献   

13.
New aromatic tetracarboxylic dianhydride, having isopropylidene and bromo‐substituted arylene ether structure 3,3′,5,5′‐tetrabromo‐2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride, was synthesized by the reaction of 4‐nitrophthalonitrile with 3,3′,5,5′‐tetrabromobisphenol A, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). The novel aromatic polyetherimides having inherent viscosities up to 1.04 dL g−1 were obtained by either a one‐step or a conventional two‐step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), pyridine, and even in less polar solvents like chloroform and tetrahydrofuran (THF). These aromatic polyimides had glass transition temperatures in the range of 256–303°C, depending on the nature of the diamine moiety. Thermogravimetric analysis (TGA) showed that all polymers were stable, with 10% weight loss recorded above 470°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1673–1680, 1999  相似文献   

14.
An asymmetric organocatalytic one‐pot strategy for the construction of spirooctahydroacridine‐3,3′‐oxindole scaffolds has been successfully developed by means of a domino Michael/Povarov reaction sequence. The one‐pot protocol affords the chiral spirocyclohexaneoxindoles bearing an octahydroacridine motif with five stereocenters in good to high yields (up to 89 % yield) with excellent to perfect diastereoselectivities (up to >20:1 d.r.) and enantioselectivities (up to >99 % ee). This highly efficient one‐pot domino procedure will allow diversity‐oriented syntheses of this intriguing class of compounds with potential biological activities.  相似文献   

15.
The reactions of 3,3′‐diaminobenzidine with 1,12‐dodecanediol in 1 : 1–1:3 molar ratios in the presence of RuCl2(PPh3)3 catalyst give poly(alkylenebenzimidazole), [ (CH2)11 O (CH2)11 Im / (CH2)10 Im ]n (Im: 5,5′‐dibenzimidazole‐2,2′‐diyl) (Ia‐Id) in 71–92% yields. The relative ratio between the [(CH2)11 O (CH2)11 Im ] unit (A) and the [‐ (CH2)10 Im ] unit (B) in the polymer chain varies depending on the ratio of the substrates used. The polymer Ia obtained from the 1 : 3 reaction contains these structural units in a 98 : 2 ratio. The polymers are soluble in polar solvents such as DMF (N,N‐dimethylformamide), DMSO (dimethyl sulfoxide), and NMP (N‐methyl‐2‐pyrrolidone) and have molecular weights Mn (Mw) of 4,200–4,800 (4,800–6,500) by GPC (polystyrene standard). The polymerization of the diol and 3,3′‐diaminobenzidine in higher molar ratios leads to partial cross‐linking of the resulting polymers Ie and If via condensation of imidazole NH group with CH2OH group. Similar reactions of 3,3′‐diaminobenzidine with α,ω‐diols, HO(CH2)mOH (m = 4–10), in a 1 : 3 molar ratio give the polymers containing [ (CH2)m−1 O (CH2) m−1 Im ] and [ (CH2) m−2 Im ] units with partial cross‐linked structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1383–1392, 1999  相似文献   

16.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

17.
18.
An efficient synthesis of novel mono and bis‐1,2,3‐triazoles 3′‐azido‐2′‐deoxythymidine (AZT) derivatives via copper(I)‐catalyzed 1,3‐dipolar cycloaddition reaction is described. Starting from AZT and terminal alkyne derivatives, mono and bis‐1,2,3‐triazole AZT derivatives are regioselectively obtained in good yields under mild conditions using CuSO4·5H2O and sodium ascorbate as a catalyst system, and t‐BuOH/H2O (1:1, v/v) as a co‐solvent. The structures of these compounds were elucidated by IR, HR MS and NMR.  相似文献   

19.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

20.
Optical resolution of racemic 5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid 2 with L‐amino acid methyl ester via the diastereomers formation was investigated. Treatment of racemic 5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid 2 with L‐valine methyl ester gave diastereomers with a total yield of 86%. The diastereomeric dipeptides can be easily separated by flash column chromatography. Acidic cleavage of the derived diastereomers gave both the optically pure (+)‐(R)‐ and (‐)‐(S)‐5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid ((+)‐(R)‐ 2 and (‐)‐(S)‐ 2 ) with a total yield of 94% and 95%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号