首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotational spectra have been assigned for four isotopic species of the linear HCN dimer in the vibrational ground state. The spectroscopic constants are
  相似文献   

2.
Vibrational (Raman and IR) spectra of the 1:1 complexes of dihalogermylene and dihalostannylene with 1,4-dioxane and PPh3 have been reported, the structures of the complexes Cl2Ge·C4H8O2 and Cl2Ge·PPh3 updated using high-resolution X-ray method. Quantum-chemistry calculations of the geometry and normal mode frequencies and eigenvectors were carried out for some of the complexes. The results show that in the structure of the polymeric solid complexes of X2M with 1,4-dioxane, intermolecular coordination XM plays a prominent role, whereas the corresponding complexes with PPh3 are monomeric. In the vibrational spectra of all the complexes, an inversion of symmetric and antisymmetric stretching νXM (X=Cl, Br; M=Ge, Sn) frequencies, found for ‘free’ X2MII particles, still persists, suggesting that the X2M moieties preserve their specifity as carbene analogues also in the complexes.  相似文献   

3.
One-photon mass-analyzed threshold ionization spectrum of 1,3,5-trifluorobenzene was obtained by using vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The Jahn-Teller parameters for the e' modes (nu(8)-nu(14)) of 1,3,5-C(6)H(3)F(3)(+) in the ground electronic state needed for spectral analysis were taken from the density functional theory results initially and were upgraded through fits to the experimental results. Excellent agreement was achieved between the experimental and calculated Jahn-Teller energy levels. Assignments of the Jahn-Teller inactive modes were accomplished by referring to the calculated frequencies and the selection rule. The ionization energy of 1,3,5-trifluorobenzene determined from the position of the 0-0 band was 9.6359+/-0.0006 eV.  相似文献   

4.
The photoinduced Rydberg ionization spectrum of the third excited electronic state of phenylacetylene cation was recorded via the origin of the cation ground electronic state. The origin of this state is 17 834 cm(-1) above the ground state of the cation, and the spectrum shows well-resolved vibrational features to the energy of 2200 cm(-1) above this. An assignment of the vibrational structure was made by comparison to calculated frequencies and Franck-Condon factors. From the assignments, and electronic structure considerations, the electronic symmetry of the C state is established to be (2)B(1).  相似文献   

5.
Two color resonant mass analyzed threshold ionization (MATI) spectroscopy was applied in order to investigate the ionic properties of the structural isomers of dichlorobenzene above the ionization threshold. A detailed analysis of the vibrational properties of the two main chlorine isotopomers of each isomer was performed resulting in a precise picture of the vibrational states in the cation ground states. The general features of the two investigated isotopomers turned out to be quite similar, although some vibrational modes are slightly different up to a few wavenumbers, except for the 6b normal mode of p-dichlorobenzene. There the spectrum of the (35)Cl(2)-isotopomer shows several additional peaks compared to the one of the (35)Cl(37)Cl-isotopomer. An explanation for the extraordinary observance is discussed. In addition to the examination of the ionic ground state the measured and calculated frequencies were used to confirm the former assignment of the vibrations in the S(1) state, especially with respect to a Herzberg-Teller coupling as observed in benzene.  相似文献   

6.
Monte Carlo simulations in the NpT ensembles have been performed for the structure exploration of aqueous 1,4-dioxane solutions. Three different systems with all-atom dioxane:TIP4P water molar compositions of 2:500 (code:D2), 8:465 (D8), and 17:425 (D17) modeled solutions of 0.22, 0.88, and 1.86 mol/dm3 concentrations, respectively, at T = 298 K and p = 1 atm. The calculated solution densities increase from 0.992 to 1.002 g/cm3 with increasing dioxane concentration and approach the experimentally determined densities within 1%. This close agreement was achieved by utilizing RESP charges fitted to the in-solution IEF-PCM/B3LYP/6-31G* electrostatic potential of dioxane taken in its chair conformation and recently developed C, H steric parameters for ethers for calculations with a 12-6-1 all-atom potential. Solution structure analyses pointed out that the dioxane molecules arrange in the solutions with favorable distances of 4-8 angstroms for the ring symmetry centers. Within this range not only pairs of rings but triangular triads and tetrads have also been observed with center-center distances <8 angstroms. For the D8 system, about 25% of the sampled configurations included such a triad. In the case of the D17 model, two simulations starting from different solution configuration predicted different degrees for the dioxane aggregation in aqueous solution. In the more aggregated structure 3-21 triads are consistently maintained and 1-2 tetrads are formed in 58% of the configurations. Each dioxane oxygen forms about one hydrogen bond, on average, to a water molecule in the 0.22-1.86 molar range. The most likely O(dioxane)...H(water) hydrogen bond distance is 1.75-1.80 angstroms compared to the optimal distance of 1.72 angstroms in the isolated dimer. The optimal dioxane-water interaction energy of -5.65 kcal/mol indicates a remarkable hydrogen-bond acceptor character for dioxane.  相似文献   

7.
8.
We study the squeezing of minimal width vibrational wave packets of diatomic molecules, like Na2, by using several laser schemes that couple the ground and excited electronic configurations of the molecule. The different schemes imply diabatic and adiabatic laser transformations, or a combination of both, whose efficiency and required physical resources are compared and analyzed.  相似文献   

9.
The data on molecular light scattering, adiabatic compressibility, and molar volume were used to study the special features of the microheterogeneous structure of solutions of cyclohexane, 1,4-dioxane, and morpholine in chlorobenzene at 25°C. The local structure of chlorobenzene experienced rearrangement close to a 0.03 solute mole fractions concentration in all the three systems. Up to a 0.1 mole fractions concentration, the structure of solutions was determined by the solvation of solute molecules. At medium concentrations, microheterogeneity was caused by agglomerates in the first system and agglomerates and conglomerates in the other two systems.  相似文献   

10.
An experimental investigation in a conventional static apparatus of the oxidation of equimolecular mixtures 1,4-dioxane-O2 has shown that 1,4-dioxane reacts with oxygen more readily than most hydrocarbons. Cool flames and ignitions were observed above 200°C in a pressure range up to 300 torr. The products of the slow reaction and cool flame were analyzed by gas chromatography and GC-MS; the slow reaction gives only CO, CO2, H2CO, H2, C2H4, and H2O. A radical chain mechanism is suggested and discussed by using an evaluation of the rate constants of the possible elementary steps by the methods of thermochemical kinetics.  相似文献   

11.
12.
Using the coupled cluster singles and doubles including connected triple excitations model with the augmented correlation consistent polarized valence double zeta basis set extended with a set of 3s3p2d1f1g midbond functions, we evaluate the ground state intermolecular potential energy surface of the chlorobenzene-argon van der Waals complex. The minima of 420 cm(-1) are characterized by Ar atom position vectors of the length 3.583 A, forming an angle of 9.87 degrees with respect to the axis perpendicular to the chlorobenzene plane. These results are compared to those obtained for similar complexes and to the experimental data available. From the potential the three-dimensional vibrational eigenfunctions and eigenvalues are calculated and the results allow to correct and complete the experimental assignment.  相似文献   

13.
The phenol(+)...Ar(2) complex has been characterized in a supersonic jet by mass analyzed threshold ionization (MATI) spectroscopy via different intermediate intermolecular vibrational states of the first electronically excited state (S(1)). From the spectra recorded via the S(1)0(0) origin and the S(1)β(x) intermolecular vibrational state, the ionization energy (IE) has been determined as 68,288 ± 5 cm(-1), displaying a red shift of 340 cm(-1) from the IE of the phenol(+) monomer. Well-resolved, nearly harmonic vibrational progressions with a fundamental frequency of 10 cm(-1) have been observed in the ion ground state (D(0)) and assigned to the symmetric van der Waals (vdW) bending mode, β(x), along the x axis containing the C-O bond. MATI spectra recorded via the S(1) state involving other higher-lying intermolecular vibrational states (σ(s)(1), β(x)(3), σ(s)(1)β(x)(1), σ(s)(1)β(x)(2)) are characterized by unresolved broad structures.  相似文献   

14.
The nitration of phenol with excess nitric acid in aqueous dioxane, in contrast to the nitration in aqueous ethanol, yields exclusively 2,4-dintrophenol, whereas at equimolar ratio of phenol and nitric acid the major reaction products are mononitrophenols (99%), among which the p-isomer prevails.  相似文献   

15.
A 285-point multi-reference configuration-interaction involving single and double excitations (MRS-DCI) potential energy surface for the electronic ground state of Li2H is determined by using 6-311G (2df, 2pd) basis set. A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a X2 of 4.64 × 10-6. The equilibrium geometry occurs at Re =0.172 nm and <LiHLi =94.10. The dissociation energy for reaction Li2H(2A)⇑ Li2(1g)+H(2S) is 243.910 kJ/mol. and that for reaction Li2H(2A)⇑HLi(1be)+Li(2S) is 106.445 kJ/mol. The inversion barrier height is 50.388 kJ/mol. The vibrational energy levels are calculated using the discrete variable representation (DVR) method. Project supported by the National Natural Science Foundation of China (grant No. 29673029) and by the Special Doctoral Research Foundation of the State Education Commission of China.  相似文献   

16.
A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A')→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.  相似文献   

17.
When 5,6-benzo-1,4-dioxane was reacted with N,N-dialkylchloramines in the presence of FeSO4 at 10–20C in a solution of acetic and sulfuric acids, 6-(N,N-dialkylamino)benzo-1,4-dioxanes and 6-chloro- and 6,7-dichloro-benzo-1,4-dioxanes were obtained. Under the conditions used in the study mainly chlorination products were synthesized. Reaction of 5,6-benzo-1,4-dipxane with the system (NH3OH)2SO4-TiCl3 resulted in the formation of 6-aminobenzo-1,4-dioxane.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 316–318, March, 1989.  相似文献   

18.
采用同步辐射光源、飞行时间质谱和分子束方法研究了1.4-二氧六环的光电离解离过程.由光电离效率曲线得出离子产物的出现势,计算了产物的生成焓.若重分析了m/e=28,29.41等离子碎片的解离通道以及离子碎片的可能结构,提出1、4-二氧六环在光电离解离过程中发生了重排反应  相似文献   

19.
Cyclic ketals — 2,5-dimethyl-2,5-bis(4-penten-2-ynyloxy)-1,4-dioxane and 2,5-dimethyl-2,5-bis(3-phenyl-2-propynyloxy)-1,4-dioxane — were isolated in the reaction of propargyl alcohol with vinyl- and phenylethynylcarbinols in the presence of HgO-BF3.O(C2H5)2 catalytic system.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1029–1030, August, 1986.  相似文献   

20.
Vibrational structure of the pyridazine cation in the ground state has been revealed by a vacuum-ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. The adiabatic ionization energy is precisely measured to be 70241 +/- 6 cm(-1) (8.7088 +/- 0.0007 eV). The origin is very weakly observed, while a long progression of the nu9(+) (a1) band of which the fundamental vibrational frequency is 647 cm(-1) is predominantly observed. The nu9(+) (a1) mode progression combined with one quantum of the nu3(+) (a1) band at 1698 cm(-1) is found to be even stronger. Many other weakly observed vibrational features of the pyridazine cation are identified in the vibrational energy of 0-3500 cm(-1). The structural change of pyridazine upon ionization, reflected in the vibrational spectrum obtained by the one-photon direct ionization process, is theoretically predicted by ab initio calculations. Ring distortion including contraction of the N=N bond should be responsible for strong excitations of nu3(+) and nu9(+) modes. Franck-Condon analysis is given for the comparison of the experiment and theory.  相似文献   

isotope-B0 (MHz)DJ (kHz)xN1 (MHz)xN2 (MHz)
HC14N-HC14N1745.80973(50)2.133(30)?4.0973(200)?4.4400(190)
HC14N-HC15N1700.30190(30)1.939(40)?4.1059(10)-
HC15N-HC14N1729.92082(20)2.023(30)-?4.4339(6)
HC15N-HC15N1684.28825(25)1.900(30)--
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号