首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Numerical simulation of gas-assisted injection molding using CLSVOF method   总被引:1,自引:0,他引:1  
It is a typical gas-liquid two phase flow phenomenon that gas penetrates the polymer melt in gas-assisted injection molding (GAIM) process. Numerical simulation is now playing an important role in GAIM, in which the accurate simulation of moving interface is of great importance. The level set (LS) method is a popular interface tracking method, but it does not ensure naturally mass-conservation. In order to improve the mass-conservation of LS method, a coupled level-set and volume-of-fluid (CLSVOF) method with mass-correction is presented for the numerical simulations of interfacial flows in GAIM. The performance of this CLSVOF method is demonstrated by two numerical tests including the three-dimensional deformation field test and the dam break problems. Finally the CLSVOF method is employed to simulate the 3D moving interfaces in GAIM, including gas-melt interface and the melt-front interface. The influences of melt temperature and gas delay time are also analyzed detailedly. As a case study, the processes that gas penetrates the polymer melt in complex cavities are also simulated using this method, and the simulation results are in agreement with those obtained by other researchers.  相似文献   

2.
Gas jets impinging onto a gas–liquid interface of a liquid pool are studied using computational fluid dynamics modelling, which aims to obtain a better understanding of the behaviour of the gas jets used metallurgical engineering industry. The gas and liquid flows are modelled using the volume of fluid technique. The governing equations are formulated using the density and viscosity of the “gas–liquid mixture”, which are described in terms of the phase volume fraction. Reynolds averaging is applied to yield a set of Reynolds-averaged conservation equations for the mass and momentum, and the kε turbulence model. The deformation of the gas–liquid interface is modelled by the pressure jump across the interface via the Young–Laplace equation. The governing equations in the axisymmetric cylindrical coordinates are solved using the commercial CFD code, FLUENT. The computed results are compared with experimental and theoretical data reported in the literature. The CFD modelling allows the simultaneous evaluation of the gas flow field, the free liquid surface and the bulk liquid flow, and provides useful insight to the highly complex, and industrially significant flows in the jetting system.  相似文献   

3.
In this paper, the Extended-Domain-Eigenfunction-Method (EDEM) is combined with the Level Set Method in a composite numerical scheme for simulating a moving boundary problem. The liquid velocity is obtained by formulating the problem in terms of the EDEM methodology and solved using a least square approach. The propagation of the free surface is effected by a narrow band Level Set Method. The two methods both pass information to each other via a bridging process, which allows the position of the interface to be updated. The numerical scheme is applied to a series of problems involving a gas bubble submerged in a viscous liquid moving subject to both an externally generated flow and the influence of surface tension.  相似文献   

4.
We present an approach and numerical results for a new formulation modeling immiscible compressible two-phase flow in heterogeneous porous media with discontinuous capillary pressures. The main feature of this model is the introduction of a new global pressure, and it is fully equivalent to the original equations. The resulting equations are written in a fractional flow formulation and lead to a coupled degenerate system which consists of a nonlinear parabolic (the global pressure) equation and a nonlinear diffusion–convection one (the saturation equation) with nonlinear transmission conditions at the interfaces that separate different media. The resulting system is discretized using a vertex-centred finite volume method combined with pressure and flux interface conditions for the treatment of heterogeneities. An implicit Euler approach is used for time discretization. A Godunov-type method is used to treat the convection terms, and the diffusion terms are discretized by piecewise linear conforming finite elements. We present numerical simulations for three one-dimensional benchmark tests to demonstrate the ability of the method to approximate solutions of water–gas equations efficiently and accurately in nuclear underground waste disposal situations.  相似文献   

5.
A new hyperbolic, two-dimensional two-fluid model is developed to properly solve two-phase gas–liquid flows. Adopting the interfacial pressure jump terms in the momentum equations, the numerical stability is confirmed owing to the improvement in the mathematical property of the equation system. The derivation of the interfacial pressure jump terms is based on the infinitesimal surface-tension effect incorporated in the pressure difference at the gas–liquid interface. Through the characteristic analysis on the equation system, the eight eigenvalues are obtained analytically and they are proved real values representing phasic convective velocities and phasic sound speeds. Furthermore, the characteristic sound speeds are comparable with the earlier experimental data in excellent agreements. In addition, the eigenvectors are obtained analytically and they are shown to be linearly independent. Consequently, the governing equation system is mathematically hyperbolic with reasonable characteristic speeds by which the upwind numerical method avails. Advantage and possibility of the present model are discussed in some detail.  相似文献   

6.
Mould filling process is a typical gas–liquid metal two phase flow phenomenon. Numerical simulation of the two phase flows of mould filling process can be used to properly predicate the back pressure effect, the gas entrapment defects, and better understand the complex motions of the gas phase and the liquid phase. In this paper, a novel sharp interface incompressible two phase numerical model for mould filling process is presented. A simple ghost fluid method like discretization method and a density evaluation method at face centers of finite difference staggered grid are proposed to overcome the difficulties when solving two phase Navier–Stokes equations with large-density ratio and large-viscosity ratio. A new mass conservation particle level set method is developed to capture the gas–liquid metal phase interface. The classical pressure-correction based SOLA algorithm is modified to solve the two phase Navier–Stokes equations. Two numerical tests including the Zalesak disk problem and the broken dam problem are used to demonstrate the accuracy of the present method. The numerical method is then adopted to simulate three mould filling examples including two high speed CCD camera imaging water filling experiments and an in situ X-ray imaging experiment of pure aluminum filling. The simulation results are in good agreement with the experiments.  相似文献   

7.
In this paper, modelling gas–liquid bubbly flows is achieved by the introduction of a population balance equation combined with the three-dimensional two-fluid model. For gas–liquid bubbly flows without heat and mass transfer, an average bubble number density transport equation has been incorporated in the commercial code CFX5.7 to better describe the temporal and spatial evolution of the geometrical structure of the gas bubbles. The coalescence and breakage effects of the gas bubbles are modelled according to the coalescence by the random collisions driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Local radial distributions of the void fraction, interfacial area concentration, bubble Sauter mean diameter, and gas and liquid velocities, are compared against experimental data in a vertical pipe flow. Satisfactory agreements for the local distributions are achieved between the predictions and measurements. For gas–liquid bubbly flows with heat and mass transfer, boiling flows at subcooled conditions are considered. Based on the formulation of the MUSIG (multiple-size-group) boiling model and a model considering the forces acting on departing bubbles at the heated surface implemented in the computer code CFX4.4, comparison of model predictions against local measurements is made for the void fraction, bubble Sauter mean diameter, interfacial area concentration, and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcooling temperatures. Good agreement is achieved with the local radial void fraction, bubble Sauter mean diameter, interfacial area concentration and liquid velocity profiles against measurements. However, significant weakness of the model is evidenced in the prediction of the vapour velocity. Work is in progress through the consideration of additional momentum equations or developing an algebraic slip model to account for the effects of bubble separation.  相似文献   

8.
In this article the local stability of the Rabinovich–Fabrikant (R–F) chaotic system with fractional order time derivative is analyzed using fractional Routh–Hurwitz stability criterion. Feedback control method is used to control chaos in the considered fractional order system and after controlling the chaos the authors have introduced the synchronization between fractional order non-chaotic R–F system and the chaotic R–F system at various equilibrium points. The fractional derivative is described in the Caputo sense. Numerical simulation results which are carried out using Adams–Boshforth–Moulton method show that the method is effective and reliable for synchronizing the systems.  相似文献   

9.
A three-dimensional CFD model was developed in this work to simulate hydrodynamic characteristics of a gas–liquid two-phase stirred tank with two six-bladed turbines and four baffles, coupling of the Multiple Size Group model to determine bubble size distribution. Important hydrodynamic parameters of the multi-phase system such as volume-averaged overall and time-averaged local gas holdups and axial liquid velocities along time and transversal courses were simulated and analyzed in detail, under varied operating conditions (inlet air flow rate and impeller rotation speed). Model predictions of local transient gas holdup and liquid velocity distributions on vertical and horizontal sections of the tank were also carried out. The overall flow patterns were discussed in detail to assess the mixing. Bubble size distributions were further predicted to reveal the unique properties of gas phase. Experimental measurements of overall gas holdups and local axial liquid velocities were used to validate the developed model.  相似文献   

10.
In the present work, experimental and numerical studies for the hydrodynamics in a gas–solid tapered fluidized bed have been carried out. The experimental results obtained by carrying out experiments in a tapered fluidized bed for glass bead (spherical) of 2.0 mm and dolomite (non-spherical particles) of 2.215 mm in diameter, were compared with the computational fluid dynamics (CFD) simulation results, using a commercial CFD software package, Fluent. The gas–solid flow was simulated using the Eulerian–Eulerian model and applying the kinetic theory of granular flow for solid particles. The Gidaspow drag model was used to calculate the gas–solid momentum exchange coefficients. Pressure drops predicted by the CFD simulations agreed reasonably well with experimental measurements for both types (spherical and non-spherical) of particles. Good agreement was also obtained between experimental and CFD predicted bed expansion ratios for both types of particles. Present study provides a useful basis for further works on the CFD of tapered fluidized bed.  相似文献   

11.
The melting of a spherical or cylindrical nanoparticle is modelled as a Stefan problem by including the effects of surface tension through the Gibbs–Thomson condition. A one-phase moving boundary problem is derived from the general two-phase formulation in the singular limit of slow conduction in the solid phase, and the resulting equations are studied analytically in the limit of small time and large Stefan number. Further analytical approximations for the temperature distribution and the position of the solid–melt interface are found by applying an integral formulation together with an iterative scheme. All these analytical results are compared with numerical solutions obtained using a front-fixing method, and are shown to provide good approximations in various regimes. The inclusion of surface tension, which acts to decrease the melting temperature as the particle melts, is shown to accelerate the melting process. Unlike the classical one-phase Stefan problem without surface tension, the solid–melt interface exhibits blow-up at some critical radius of the particle (which for metals is of the order of a few nanometres), a phenomenon that has been observed experimentally. An interesting feature of the model is the prediction that surface tension drives superheating in the solid particle before blow-up occurs.  相似文献   

12.
In this paper, we study fractional differential inclusions with Dirichlet boundary conditions. We prove the existence of a solution under both convexity and nonconvexity conditions on the multi-valued right-hand side. The proofs rely on nonlinear alternative Leray–Schauder type, Bressan–Colombo selection theorem and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The compactness of the set solutions and relaxation results is also established. In the last section we consider the fractional boundary value problem with infinite delay.  相似文献   

13.
We perform an analysis of the pattern formation for a moving sheet of inviscid fluid. The sheet, which is assumed to have an infinite horizontal extent, moves at some prescribed velocity into a passive surrounding gas. The sheet’s thickness is assumed much smaller than the horizontal scale of the fluid motion. By considering a system that is symmetric with respect to the horizontal planes, long scale asymptotics are used to reduce the full governing equations in three dimensions to a set of three coupled nonlinear partial differential equations for the horizontal components of the velocity field and the height of the interface profile. The interfacial conditions consisting of the kinematic and normal stress balance are incorporated into these evolution equations. Investigations are carried out as function of the sole dimensionless parameter, namely the Weber number. A small amplitude stability analysis around the planar gas–liquid interface reveals that wave patterns in the form of traveling plane waves occur subcritically, and are therefore unstable. The reduced evolution equations are solved numerically for fixed values of the Weber number. Since the reduced system of equations is homogeneous, the wave motion is generated by initial conditions. Five initial conditions have been imposed: one-dimensional rolls, two-dimensional squares, two-dimensional hexagons, two-dimensional ridges, and smooth peaks. The ensuing evolution of the liquid sheet’s shape and corresponding flow fields are described by illustrations of the changes in the sheet’s morphology with time.  相似文献   

14.
We characterize the finite variation property for stationary increment mixed moving averages driven by infinitely divisible random measures. Such processes include fractional and moving average processes driven by Lévy processes, and also their mixtures. We establish two types of zero–one laws for the finite variation property. We also consider some examples to illustrate our results.  相似文献   

15.
The two-dimensional problem of a simply supported laminated orthotropic strip with viscoelastic interfaces under static loading is studied. State-space formulations are developed based on the exact elasticity equations governing orthotropic media and the Kelvin–Voigt constitutive relation of interfaces. Since the response of the strip is time-dependent, the power series expansion technique is adopted to model the variations of elastic fields with time. Results show that the response of the laminated strip with viscoelastic interfaces changes remarkably with time, which is also significantly different from that of a plate with perfect interfaces or with viscous interfaces. Note that from the present analysis, the response for a laminated plate with spring-like interfaces or with viscous interfaces can be easily obtained because they are just two particular cases of the present Kelvin–Voigt model.  相似文献   

16.
Heat and mass transfer phenomena in annular liquid jets are analyzed at high Reynolds numbers by means of a model derived from the governing equations that takes into account the effects of surface tension and boundary conditions at the gas–liquid interfaces and the large differences between the thermal and mass diffusivities, densities, dynamic viscosities, and thermal conductivities between gases and liquids. The model clearly illustrates the stiffness in both space and time associated with the concentration, linear momentum and energy boundary layers, and the initial cooling of the gases enclosed by the jet when, starting from a steady state where gases are injected into the volume enclosed by the jet at a rate equal to the heat and mass absorption rates by the liquid, gas injection is stopped. It is shown that, owing to the non-linear integrodifferential coupling between the fluid dynamics and heat and mass transfer processes, the pressure of the gases enclosed by the jet may vary in either a monotonic or an oscillatory manner depending on the large number of non-dimensional parameters that govern the heat and mass transfer phenomena. For the underpressurized jets considered here, it is shown that thermal equilibrium is achieved at a much faster rate than that associated with mass transfer, double diffusive phenomena in the liquid may occur, and the mass and volume of the gases enclosed by the jet may increase or decrease as functions of time until a steady equilibrium condition is reached.  相似文献   

17.
用Level Set算法模拟孤立波与前台阶的相互作用   总被引:1,自引:0,他引:1  
进一步研究了Level Set方法的数学基础,研究了求解有自由水面水动力学问题的具体方法。并在此基础上,对孤立波与前台阶相互作用这一问题进行了计算及研究,取得了与实验结果相符合的计算结果。  相似文献   

18.
The fundamental solution of the fractional diffusion equation of distributed order in time (usually adopted for modelling sub-diffusion processes) is obtained based on its Mellin–Barnes integral representation. Such solution is proved to be related via a Laplace-type integral to the Fox–Wright functions. A series expansion is also provided in order to point out the distribution of time-scales related to the distribution of the fractional orders. The results of the time fractional diffusion equation of a single order are also recalled and then re-obtained from the general theory.  相似文献   

19.
粘弹性二阶流体混合层流场拟序结构的数值研究   总被引:1,自引:1,他引:0  
本文用拟谱方法对随时间发展的二维粘弹性二阶流体混合层流场进行了直接数据值模拟,给出在高雷诺数和低Deborah数下大涡的卷起、配对和合并等过程,通过与相同雷诺数下牛顿流体的比较,揭示了弱粘弹性对混合层中大涡拟序结构演变的影响.  相似文献   

20.
We have implemented a high-order Lax–Wendroff type time integration for a central scheme on an overlapping grid for conservation law problems. Using a local iterative approach presented by Dumbser et al. (JCP, 2008) [12], we extend a local high-order spatial reconstruction on each cell to a local higher-order space–time polynomial on the cell. We rewrite the central scheme in a fully discrete form to avoid volume integration in the space–time domain. The fluxes at cell interfaces are calculated directly via integrating a higher-order space–time reconstruction of the flux. We compare this approach with the corresponding multi-stage Runge–Kutta time integration (RK). Numerical results show that the new time integration is more cost-effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号