共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an inventory model with general ramp type demand rate, time dependent (Weibull) deterioration rate and partial backlogging of unsatisfied demand is considered. The model is studied under the following different replenishment policies: (a) starting with no shortages and (b) starting with shortages. The model is fairly general as the demand rate, up to the time point of its stabilization, is a general function of time. The backlogging rate is any non-increasing function of the waiting time up to the next replenishment. The optimal replenishment policy for the model is derived for both the above mentioned policies. 相似文献
2.
《Applied Mathematical Modelling》2014,38(19-20):4941-4948
This note is a response to optimal policy for deteriorating items with trapezoidal type demand and partial backlogging by Cheng et al. [4]. In the above mentioned paper, a new inventory model was created, but both their model and their solution procedure contained some questionable results. In this note a detailed examination of their paper will be provided, offering an enhancement to their important inventory model and solution procedure. Numerical examples and detailed analysis of the four scenarios are used to illustrate our findings. 相似文献
3.
An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging 总被引:3,自引:0,他引:3
Jinn-Tsair Teng Horng-Jinh Chang Chung-Yuan Dye Cheng-Hsing Hung 《Operations Research Letters》2002,30(6)
Recently, Papachristos and Skouri developed an inventory model in which unsatisfied demand is partially backlogged at a negative exponential rate with the waiting time. In this article, we complement the shortcoming of their model by adding not only the cost of lost sales but also the non-constant purchase cost. 相似文献
4.
Shih-Wei Lin 《European Journal of Operational Research》2011,211(3):520-524
This paper is an extension of two papers. The first of these, published in European Journal of Operational Research, 2007, 112-120 is by Deng et al. (2007) and concerns inventory models for deteriorating items with ramp type demand. The second, published in Computer & Industrial Engineering, 2009, 1296-1300 is by Cheng and Wang (2009) and concerns inventory models for deteriorating items with trapezoidal type demand. The purpose of this paper is threefold. First, this paper will show that the optimal solution is independent of the demand considered in the two previous papers. Second, several replenishment cycles were considered during the finite time horizon, to balance the set-up cost with the sum of the deteriorated cost, holding cost, and shortage cost. Third, this paper will examine the same numerical example in Cheng and Wang (2009) to show that this new approach will result in the saving of 84.39%. 相似文献
5.
Maw-Sheng Chern Hui-Ling Yang Jinn-Tsair Teng Sotiris Papachristos 《European Journal of Operational Research》2008
In this paper, the traditional inventory lot-size model is extended to allow not only for general partial backlogging rate but also for inflation. The assumptions of equal cycle length and constant shortage length imposed in the model developed by Moon et al. [Moon, I., Giri, B.C., Ko, B., 2005. Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting, European Journal of Operational Research 162(3), 773–785] are also relaxed. For any given number of replenishment cycles the existence of a unique optimal replenishment schedule is proved and further the convexity of the total cost function of the inventory system in the number of replenishments is established. The theoretical results here amend those in Yang et al. [Yang, H.L., Teng, J.T., Chern, M.S., 2001. Deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand, Naval Research Logistics 48(2), 144–158] and provide the solution to those two counterexamples by Skouri and Papachristos [Skouri, K., Papachristos, S., 2002. Note on “deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand” by Yang et al. Naval Research Logistics 49(5), 527–529.]. Finally we propose an algorithm to find the solution, and obtain some managerial results by using sensitivity analyses. 相似文献
6.
Recently, Min et al. [18] established an inventory model for deteriorating items under stock-dependent demand and two-level trade credit and obtained the optimal replenishment policy. Their analysis imposed a terminal condition of zero ending-inventory. However, with a stock-dependent demand, it may be desirable to order large quantities, resulting in stock remaining at the end of the cycle, due to the potential profits resulting from the increased demand. As a result, to make the theory more applicable in practice, we extend their model to allow for: (1) an ending-inventory to be nonzero, (2) a maximum inventory ceiling to reflect the facts that too much stock leaves a negative impression on the buyer and the amount of shelf/display space is limited. 相似文献
7.
In this paper, we present an optimal procedure for finding the replenishment schedule for the inventory system in which items deteriorate over time and demand rates are increasing over a known and finite planning horizon. 相似文献
8.
In this research we study the inventory models for deteriorating items with ramp type demand rate. We first clearly point out some questionable results that appeared in (Mandal, B., Pal, A.K., 1998. Order level inventory system with ramp type demand rate for deteriorating items. Journal of Interdisciplinary Mathematics 1, 49–66 and Wu, K.S., Ouyang, L.Y., 2000. A replenishment policy for deteriorating items with ramp type demand rate (Short Communication). Proceedings of National Science Council ROC (A) 24, 279–286). And then resolve the similar problem by offering a rigorous and efficient method to derive the optimal solution. In addition, we also propose an extended inventory model with ramp type demand rate and its optimal feasible solution to amend the incompleteness in the previous work. Moreover, we also proposed a very good inventory replenishment policy for this kind of inventory model. We believe that our work will provide a solid foundation for the further study of this sort of important inventory models with ramp type demand rate. 相似文献
9.
In this paper, a deterministic inventory model for deteriorating items with two warehouses is developed. A rented warehouse is used when the ordering quantity exceeds the limited capacity of the owned warehouse, and it is assumed that deterioration rates of items in the two warehouses may be different. In addition, we allow for shortages in the owned warehouse and assume that the backlogging demand rate is dependent on the duration of the stockout. We obtain the condition when to rent the warehouse and provide simple solution procedures for finding the maximum total profit per unit time. Further, we use a numerical example to illustrate the model and conclude the paper with suggestions for possible future research. 相似文献
10.
The global markets of today offer more selling opportunities to the deteriorating items’ manufacturers, but also pose new challenges in production and inventory planning. From a production management standpoint, opportunities to exploit the difference in the timing of the selling season between geographically dispersed markets for deteriorating items are important to improving a firm’s profitability. In this paper, we examined the above issue with an insightful production-inventory model of a deteriorating items manufacturer selling goods to multiple-markets with different selling seasons. We also provided a solution procedure to find the optimal replenishment schedule for raw materials and the optimal production plan for finished products. A numerical example was then used to illustrate the model and the solution procedure. Finally, sensitivity analysis of the optimal solution with respect to major parameters was carried out. 相似文献
11.
An inventory model for ameliorating/deteriorating items with trapezoidal demand and complete backlogging under inflation and time discounting 下载免费PDF全文
Recently, numerous inventory models were developed for ameliorating items (say, fish, ducklings, chicken, etc.) considering the constant demand rate. However, such types of problems are not useful in the real market. The demand rate of ameliorating items is fluctuates in their life‐period. The consumption and demand of ameliorating items are not generally steady. In a few seasons, the demand rate increases; ordinarily, it is static, and sometimes, it declines. With the outcome that their demand rate can be properly portrayed by a trapezoidal‐type. In the proposed model, an inventory model for ameliorating/deteriorating items are considered with inflationary condition and time discounting rate. Additionally, having shortages that is completely backlogged. The demand rate is taken as the continuous trapezoidal‐type function of time. The amelioration and deterioration rate are considered as Weibull distribution. To obtain the minimum cost, mathematical formulation of the proposed model with solution procedure is talked about. Numerical cases are given to be checked the optimal solution. Additionally, we have talked about the convexity of the proposed model through graphically. Conclusion with future worked are clarified appropriately. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
Min et al. [1] (J. Min, Y.W. Zhou, J. Zhao, An inventory model for deteriorating items under stock-dependent demand and two-level trade credit, Appl. Math. Model. 34 (2010) 3273–3285.) develop an inventory model for deteriorating items under stock-dependent demand and two-level trade credit. They provide the necessary and sufficient conditions of the existence and uniqueness of the optimal solutions that could maximize the retailer’s average profit per unit time. Basically, their paper is correct and interesting. Recently, several researchers have been showing a huge interest in developing simple and easy to implement solution procedures in management science. Therefore this paper indicates that Min et al.’s solution procedure can be further improved and simplified. So, the main purpose of this paper is to present simple and easy to understand solution procedures to locate the optimal solutions of an inventory model that considers deteriorating items under stock-dependent demand and two-level trade credit. 相似文献
13.
Chung-Yuan DyeTsu-Pang Hsieh 《European Journal of Operational Research》2012,218(1):106-112
In this paper, considering the amount invested in preservation technology and the replenishment schedule as decision variables, we formulate an inventory model with a time-varying rate of deterioration and partial backlogging. The objective is to find the optimal replenishment and preservation technology investment strategies while maximizing the total profit per unit time. For any given preservation technology cost, we first prove that the optimal replenishment schedule not only exists but is unique. Next, under given replenishment schedule, we show that the total profit per unit time is a concave function of preservation technology cost. We then provide a simple algorithm to figure out the optimal preservation technology cost and replenishment schedule for the proposed model. We use numerical examples to illustrate the model. 相似文献
14.
This study develops deteriorating items production inventory models with random machine breakdown and stochastic repair time. The model assumes the machine repair time is independent of the machine breakdown rate. The classical optimization technique is used to derive an optimal solution. A numerical example and sensitivity analysis are shown to illustrate the models. The stochastic repair models with uniformly distributed repair time tends to have a larger optimal total cost than the fixed repair time model, however the production up time is less than the fixed repair time model. Production and demand rate are the most sensitive parameters for the optimal production up time, and demand rate is the most sensitive parameter to the optimal total cost for the stochastic model with exponential distribution repair time. 相似文献
15.
An inventory system is considered for continuous decaying items with non-zero lead time and stochastic demand when shortages are allowed and all unsatisfied demands are backlogged. In this research we consider orders as separate packages where replenishment is one-for-one and a modified base stock policy is applied. In this paper, a penalty cost is introduced for stochastic inventory models with decaying items when less than one unit of the product is delivered to the customers. The objective of the warehouse is to maximize his average profit. Since the concavity analysis of the model is extremely complicated, an upper bound is introduced and an algorithm is presented for finding the optimal solution. Finally, a numerical example is presented and sensitivity analysis is carried out for a number of important parameters. 相似文献
16.
In the business transactions, the supplier usually offers a permissible delay in payment to his retailer to attract more sales. In addition, a permissible delay in payment may be applied as an alternative to price discount. Based on the above phenomena, we incorporate a permissible delay in payment into the model of Yang [1] and develop a two-warehouse partial backlogging inventory model for deteriorating items with permissible delay in payment under inflation. The objective of this study is to derive the retailer’s optimal replenishment policy that maximizes the net present value of the profit per unit time. The necessary and sufficient conditions for an optimal solution are characterized. An algorithm is developed to find the optimal solution. Finally, numerical examples are provided to illustrate the proposed model. Sensitivity analysis is made and some managerial implications are presented. 相似文献
17.
This study investigates a two-echelon supply chain model for deteriorating inventory in which the retailer’s warehouse has a limited capacity. The system includes one wholesaler and one retailer and aims to minimise the total cost. The demand rate in retailer is stock-dependent and in case of any shortages, the demand is partially backlogged. The warehouse capacity in the retailer (OW) is limited; therefore the retailer can rent a warehouse (RW) if needed with a higher cost compared to OW. The optimisation is done from both the wholesaler’s and retailer’s perspectives simultaneously. In order to solve the problem a genetic algorithm is devised. After developing a heuristic a numerical example together with sensitivity analysis are presented. Finally, some recommendations for future research are presented. 相似文献
18.
An inventory model for non-instantaneous
deteriorating items with quadratic demand rate and shortages under trade credit policy 下载免费PDF全文
noindent In this paper, we propose an appropriate inventory model for non-instantaneous deteriorating items over quadratic demand rate with permissible delay in payments and time dependent deterioration rate. In this model, the completely backlogged shortages are allowed. In several existing results, the authors discussed that the deterioration rate is constant in each cycle. However, the deterioration rate of items are not constant in real world applications. Motivated by this fact, we consider that the items are deteriorated with respect to time. To minimize the total relevant inventory cost, we prove some useful theorems to illustrate the optimal solutions by finding an optimal cycle time with the necessary and enough conditions for the existence and uniqueness of the optimal solutions. Finally, we discuss the numerical instance and sensitivity of the proposed model. 相似文献
19.
Jiang Wu Liang-Yuh Ouyang Leopoldo Eduardo Cárdenas-Barrón Suresh Kumar Goyal 《European Journal of Operational Research》2014
In a supplier-retailer-buyer supply chain, the supplier frequently offers the retailer a trade credit of S periods, and the retailer in turn provides a trade credit of R periods to her/his buyer to stimulate sales and reduce inventory. From the seller’s perspective, granting trade credit increases sales and revenue but also increases opportunity cost (i.e., the capital opportunity loss during credit period) and default risk (i.e., the percentage that the buyer will not be able to pay off her/his debt obligations). Hence, how to determine credit period is increasingly recognized as an important strategy to increase seller’s profitability. Also, many products such as fruits, vegetables, high-tech products, pharmaceuticals, and volatile liquids not only deteriorate continuously due to evaporation, obsolescence and spoilage but also have their expiration dates. However, only a few researchers take the expiration date of a deteriorating item into consideration. This paper proposes an economic order quantity model for the retailer where: (a) the supplier provides an up-stream trade credit and the retailer also offers a down-stream trade credit, (b) the retailer’s down-stream trade credit to the buyer not only increases sales and revenue but also opportunity cost and default risk, and (c) deteriorating items not only deteriorate continuously but also have their expiration dates. We then show that the retailer’s optimal credit period and cycle time not only exist but also are unique. Furthermore, we discuss several special cases including for non-deteriorating items. Finally, we run some numerical examples to illustrate the problem and provide managerial insights. 相似文献
20.
Jinn-Tsair Teng Iris-Pandora KrommydaKonstantina Skouri Kuo-Ren Lou 《European Journal of Operational Research》2011,215(1):97-104
In a recent paper, Soni and Shah (2008) presented an inventory model with a stock-dependent demand under progressive payment scheme, assuming zero ending-inventory and adopting a cost-minimization objective. However, with a stock-dependent demand a non-zero ending stock may increase profits resulting from the increased demand. This work is motivated by Soni and Shah’s (2008) paper extending their model to allow for: (1) a non-zero ending-inventory, (2) a profit-maximization objective, (3) a limited inventory capacity and (4) deteriorating items with a constant deterioration rate. For the resulted model sufficient conditions for the existence and uniqueness of the optimal solution are provided. Finally, several economic interpretations of the theoretical results are also given. 相似文献