首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a fault diagnosis architecture for a class of hybrid systems with nonlinear uncertain time-driven dynamics, measurement noise, and autonomous and controlled mode transitions. The proposed approach features a hybrid estimator based on a modified hybrid automaton framework. The fault detection scheme employs a filtering approach that attenuates the effect of the measurement noise and allows tighter mode-dependent thresholds for the detection of both discrete and parametric faults while guaranteeing no false alarms due to modeling uncertainty and mode mismatches. Both the hybrid estimator and the fault detection scheme are linked with an autonomous guard events identification (AGEI) scheme that handles the effects of mode mismatches due to autonomous mode transitions and allows effective mode estimation. Finally, the fault isolation scheme anticipates which fault events may have occurred and dynamically employs the appropriate isolation estimators for isolating the fault by calculating suitable thresholds and estimating the parametric fault magnitude through adaptive approximation methods. Simulation results from a five-tank hybrid system illustrate the effectiveness of the proposed approach.  相似文献   

2.
In this paper, we present two control schemes for the unknown sampled-data nonlinear singular system. One is an observer-based digital redesign tracker with the state-feedback gain and the feed-forward gain based on off-line observer/Kalman filter identification (OKID) method. The presented control scheme is able to make the unknown sampled-data nonlinear singular system to well track the desired reference signal. The other is an active fault tolerance state-space self-tuner using the OKID method and modified autoregressive moving average with exogenous inputs (ARMAX) model-based system identification for unknown sampled-data nonlinear singular system with input faults. First, one can apply the off-line OKID method to determine the appropriate (low-) order of the unknown system order and good initial parameters of the modified ARMAX model to improve the convergent speed of recursive extended-least-squares (RELS) method. Then, based on modified ARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown sampled-data nonlinear singular system with immeasurable system state. Moreover, in order to overcome the interference of input fault, one can use a fault-tolerant control scheme for unknown sampled-data nonlinear singular system by modifying the conventional self-tuner control (STC). The presented method can effectively cope with partially abrupt and/or gradual system input faults. Finally, some illustrative examples including a real circuit system are given to demonstrate the effectiveness of the presented design methodologies.  相似文献   

3.
《Applied Mathematical Modelling》2014,38(7-8):2090-2100
This paper deals with actuator fault detection and estimation for the Lur’e differential inclusion system. An adaptive full-order observer is used to detect the occurrence of the actuator fault. Then, based on a reduced-order observer, an approach to estimate the actuator fault is presented. A simulation of rotor system is given to illustrate the effectiveness of the proposed method.  相似文献   

4.
In this paper, a new method of fault isolation and identification based on parameter intervals for nonlinear dynamic systems is proposed. The practical domain of the value of each system parameter is divided into a certain number of intervals. After verifying all the intervals whether or not one of them contains the faulty parameter value of the system, the faulty parameter value is found, the fault is therefore isolated. The method provides the estimation of the faulty parameter value and its bounds when the fault is isolated. It fits many kinds of nonlinear dynamic systems with ideal isolation and identification speed. The performances of the proposed method are illustrated by the simulation results of a fermentation process.  相似文献   

5.
针对滚动轴承滚珠磨损故障特征难以提取的问题,提出一种基于多脉冲激励法下的Volterra级数核的求解算法.该方法是一种非线性系统模型的“交叉”诊断法,利用轴承系统输入输出的采样信号,建立Volterra非线性辨识系统模型,并运用多脉冲激励Volterra低阶核求解算法,将得到的低阶核通过时域和频域进行对比来判断轴承当前所处的运行状态.该文以无心车床主轴轴承为例进行实验验证,并与传统的小波分析法对比得出:多脉冲激励法能够方便准确地提取轴承的故障特征,该方法对此类故障的诊断具有一定的借鉴意义.  相似文献   

6.
人们根据非线性系统的复杂特性归结了几种具有代表性的非线性模型.而模糊辨识方法是辨识非线性系统的有力工具,本文采用T-S模糊模型对三种常见的非线性模型:Hammerstein模型,Wiener模型和双线性模型进行逼近,并根据仿真数据研究不同的非线性结构对模糊模型逼近精度的影响.仿真实例是在训练和检验数据组数、模型阶数相同的情况下,采用三角形隶属函数,聚类型隶属函数和高斯型隶属函数分别对这三种非线性模型进行逼近能力的研究.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(11-12):2744-2757
Efficient and reliable operation of Polymer Electrolyte Membrane (PEM) fuel cells are key requirements for their successful commercialization and application. The use of diagnostic techniques enables the achievement of these requirements. This paper focuses on model-based fault detection and isolation (FDI) for PEM fuel cell stack systems. The work consists in designing and selecting a subset of consistency relations such that a set of predefined faults can be detected and isolated. Despite a nonlinear model of the PEM fuel cell stack system will be used, consistency relations that are easily implemented by a variable back substitution method will be selected. The paper also shows the significance of structural models to solve diagnosis issues in complex systems.  相似文献   

8.
This paper focuses on the fault estimation problem for switched systems with partially unknown nonlinear dynamics, actuator and sensor faults, simultaneously. The fault estimation observers are constructed, in which the observer dimension is not fixed and can be selected in a certain range. Both the disturbance decoupling and disturbance attenuation are considered, where the unknown nonlinear dynamics can be decoupled and the effect of modeling error and measurement disturbance is attenuated. Based on the average dwell time and the piecewise Lyapunov function, the observer parameter matrices can be calculated by solving LMIs and matrix equations. Finally, two examples are listed to verify the proposed fault estimation approach.  相似文献   

9.
The rolling bearings often suffer from compound faults in practice. The concurrence of different faults increases the fault detection difficulty and the decoupling detection of compound faults is attracting considerable attentions. Recent publications report the application of the multiwavelets and empirical mode decomposition (EMD) for compound faults decoupling. However, due to limited adaptability they would induce mode mixing or/and overestimation problems in the signal processing. Particularly, the mode mixing would greatly degrade their performance on compound faults detection. To address this issue, this work presents a new method based on the empirical wavelet transform-duffing oscillator (EWTDO) for compound faults decoupling diagnosis of rolling bearings. The empirical wavelet transform (EWT) is able to extract intrinsic modes of a signal by fully adaptive wavelet basis. Hence, the mode mixing and overestimation can be resolved in decoupling processing and the compound faults can be correctly decomposed into different single faults in the form of empirical modes. Then, each single fault frequency was incorporated into a duffing oscillator to establish its corresponding fault isolator. By directly observing the chaotic motion from the Poincar mapping of the isolator outputs the single faults were identified one by one from the empirical modes. Experimental tests were carried out on a rolling bearing fault tester to examine the efficacy of the proposed EWTDO method on compound faults detection. The analysis results show attractive performance with respect to existing decoupling approaches based on the multiwavelets and EMD. In particular, our proposed method is much more reliable in decoupling the compound faults. Hence, the proposed method has practical importance in compound faults decoupling diagnosis for rolling bears.  相似文献   

10.
《Applied Mathematical Modelling》2014,38(5-6):1753-1774
An active fault tolerant control (FTC) scheme is proposed in this paper to accommodate for an industrial steam turbine faults based on integration of a data-driven fault detection and diagnosis (FDD) module and an adaptive generalized predictive control (GPC) approach. The FDD module uses a fusion-based methodology to incorporate a multi-attribute feature via a support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) classifiers. In the GPC formulation, an adaptive configuration of its internal model has been devised to capture the faulty model for the set of internal steam turbine faults. To handle the most challenging faults, however, the GPC control configuration is modified via its weighting factors to demand for satisfactory control recovery with less vigorous control actions. The proposed FTC scheme is hence able to systematically maintain early FDD with efficient fault accommodation against faults jeopardizing the steam turbine availability. Extensive simulation tests are conducted to explore the effectiveness of the proposed FTC performances in response to different categories of steam turbine fault scenarios.  相似文献   

11.
The normal operation of propulsion gearboxes ensures the ship safety. Chaos indicators could efficiently indicate the state change of the gearboxes. However, accurate detection of gearbox hybrid faults using Chaos indicators is a challenging task and the detection under speed variation conditions is attracting considerable attentions. Literature review suggests that the gearbox vibration is a kind of nonlinear mixture of variant vibration sources and the blind source separation (BSS) is reported to be a promising technique for fault vibration analysis, but very limited work has addressed the nonlinear BSS approach for hybrid faults decoupling diagnosis. Aiming to enhance the fault detection performance of Chaos indicators, this work presents a new nonlinear BSS algorithm for gearbox hybrid faults detection under a speed variation condition. This new method appropriately introduces the kernel spectral regression (KSR) framework into the morphological component analysis (MCA). The original vibration data are projected into the reproducing kernel Hilbert space (RKHS) where the instinct nonlinear structure in the original data can be linearized by KSR. Thus the MCA is able to deal with nonlinear BSS in the KSR space. Reliable hybrid faults decoupling is then achieved by this new nonlinear MCA (NMCA). Subsequently, by calculating the Chaos indicators of the decoupled fault components and comparing them with benchmarks, the hybrid faults can be precisely identified. Two specially designed case studies were implemented to evaluate the proposed NMCA-Chaos method on hybrid gear faults decoupling diagnosis. The performance of the NMCA-Chaos was compared with state of art techniques. The analysis results show high performance of the proposed method on hybrid faults detection in a marine propulsion gearbox with large speed variations.  相似文献   

12.
This work proposes the command tracking problem for uncertain Euler–Lagrange (EL) systems with multiple partial loss of effectiveness (PLOE) actuator faults. Compared to existing fault-tolerant controllers for EL systems, the proposed adaptive controller accounts for parametric uncertainties in the system and multiple time-varying actuator fault parameters. The proposed method can also handle an infinite number of fault cases. The closed-loop fault-tolerant system is treated as a switched dynamical system, and a switched system stability is established using multiple Lyapunov functions. It is shown that all signals are bounded in each sub-interval and at the switching instances, and asymptotic tracking can be obtained only for a finite number of fault occurrences, whereas tracking error is bounded for the infinite case. Finally, a simulation example on a robotic manipulator is presented to show the effectiveness of the proposed method.  相似文献   

13.
This paper investigates the problem of dynamic output feedback fault tolerant controller design for discrete-time switched systems with actuator fault. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault. Then based on the obtained online fault estimation information, a switched dynamic output feedback fault tolerant controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.  相似文献   

14.
Robust state estimation and fault diagnosis are challenging problems in the research into hybrid systems. In this paper a novel robust hybrid observer is proposed for a class of hybrid systems with unknown inputs and faults. Model uncertainties, disturbances and faults are represented as structured unknown inputs. The robust hybrid observer consists of a mode observer for mode identification and a continuous observer for continuous state estimation and mode transition detection. It is shown that the mode can be identified correctly and the continuous state estimation error is exponentially uniformly bounded. Robustness to model uncertainties and disturbances can be guaranteed for the hybrid observer by disturbance decoupling. Furthermore, the detectability and mode identifiability conditions are rigorously analyzed. On the basis of the robust hybrid observer, a robust fault detection and isolation scheme is presented also in the paper. Simulations of a hybrid four-tank system show the proposed approach is effective.  相似文献   

15.
In this work we study the fault detection problem using residualgenerators based upon high gain nonlinear observers in a differentialalgebraic framework. We analyse the stability of the residualgenerator when a fault occurs. We also consider two faults types:constant and time-varying faults. It is shown that under somemild conditions over the aforementioned faults the residualis different from zero.  相似文献   

16.
不确定线性系统的最优保性能可靠控制   总被引:6,自引:0,他引:6  
针对一类不确定线性系统,采用连续增益故障模型提出了考虑执行器故障的保性能可靠控制问题.通过对具有执行器增益故障的系统分析,利用线性矩阵不等式(LMI)分别给出了保性能标准控制、最优保性能标准控制、保性能可靠控制、最优保性能可靠控制存在的充分条件.根据凸优化理论,最优保性能标准控制和最优保性能可靠控制的设计方法转化为一个线性凸优化算法.仿真数例验证了文中所提出方法的可行性.在相同形式的故障发生时,比较最优保性能标准控制与最优保性能可靠控制,进一步说明了最优保性能可靠控制的必要性.  相似文献   

17.
Hybrid system models exploit the modelling abstraction that fast state transitions take place instantaneously so that they encompass discrete events and the continuous time behaviour for the while of a system mode. If a system is in a certain mode, e.g. two rigid bodies stick together, then residuals of analytical redundancy relations (ARRs) within certain small bounds indicate that the system is healthy. An unobserved mode change, however, invalidates the current model for the dynamic behaviour. As a result, ARR residuals may exceed current thresholds indicating faults in system components that have not happened. The paper shows that ARR residuals derived from a bond graph cannot only serve as fault indicators but may also be used for bond graph model-based system mode identification. ARR residuals are numerically computed in an off-line simulation by coupling a bond graph of the faulty system to a non-faulty system bond graph through residual sinks. In real-time simulation, the faulty system model is to be replaced by measurements from the real system. As parameter values are uncertain, it is important to determine adaptive ARR thresholds that, given uncertain parameters, allow to decide whether the dynamic behaviour in a current system mode is the one of the healthy system so that false alarms or overlooking of true faults can be avoided. The paper shows how incremental bond graphs can be used to determine adaptive mode-dependent ARR thresholds for switched linear time-invariant systems with uncertain parameters in order to support robust fault detection. Bond graph-based hybrid system mode identification as well as the determination of adaptive fault thresholds is illustrated by application to a power electronic system easy to survey. Some simulation results have been analytically validated.  相似文献   

18.
In this paper, the extended dissipative asynchronous tracking control problem is studied for semi-Markov jump systems with hybrid actuator faults via a memory-based adaptive event-triggered mechanism. Firstly, since the system mode and controller mode do not match exactly, an asynchronous tracking control based on hidden Markov model is designed. Secondly, compared with existing memory-based and memoryless event-triggered mechanisms, the memory-based adaptive event-triggered mechanism proposed in this paper can achieve better performance according to the historical data released and the adaptive event triggering threshold. Next, considering the unsafe operating environment of the device, an asynchronous hybrid actuator failure model is constructed. Furthermore, by designing appropriate Lyapunov–Krasovskii functional, the stochastic stability and extended dissipative performance of the closed-loop system can be guaranteed. Finally, the effectiveness of the proposed method is proved by simulation examples.  相似文献   

19.
Fault detection of rotating machinery by the complex and non-stationary vibration signals with noise is very difficult, especially at the early stages. Also, many failure mechanisms and various adverse operating conditions in rotating machinery involve significant nonlinear dynamical properties. As a novel method, phase space reconstruction is used to study the effect of faults on the chaotic behavior, for the first time. Strange attractors in reconstructed phase space proof the existence of chaotic behavior. To quantify the chaotic vibration for fault diagnosis, a set of new features are extracted. These features include the largest Lyapunov exponent; approximate entropy and correlation dimension which acquire more fault characteristic information. The variations of these features for different healthy/faulty conditions are very good for fault diagnosis and identification. For the first time, a new chaotic feature space is introduced for fault detection, which is made from chaotic behavior features. In this space, different conditions of rotating machinery are separated very well. To obtain more generalized results, the features are introduced into a neural network to identify different faults in rotating machinery. The effectiveness of the new features based on chaotic vibrations is demonstrated by the experimental data sets. The proposed approach can reliably recognize different fault types and have more accurate results. Also, the performance of the new procedure is robust to the variation of load values and shows good generalization capability for various load values.  相似文献   

20.
The present paper proposes a new robust fault tolerant control (RFTC) design for continuous-time switched systems. The main objective is to design in an integrated way the couple (controller, observer) that allows to stabilize switched systems even in the presence of actuator faults. A state/fault estimation observer is designed to simultaneously estimate system state and actuator faults. Based on this observer, a fault tolerant controller is developed to stabilize the system and accommodate the actuator faults automatically. The RFTC problem is formalized in the form of linear matrix inequalities (LMI) rather than bilinear matrix inequalities (BMI), to avoid the difficulty of solving BMIs. Finally, a numerical example composed of unstable subsystems is studied to show the applicability and efficiency of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号