首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an extension of earlier research on heirarchical control of stochastic manufacturing systems with linear production costs. A new method is introduced to construct asymptotically optimal open-loop and feedback controls for manufacturing systems in which the rates of machine breakdown and repair are much larger than the rate of fluctuation in demand and rate of discounting of cost. This new approach allows us to carry out an asymptotic analysis on manufacturing systems with convex inventory/backlog and production costs as well as obtain error bound estimates for constructed open loop controls. Under appropriate conditions, an asymptotically optimal Lipschitz feedback control law is obtained.This work was partly supported by the NSERC Grant A4619, URIF, General Motors of Canada, and Manufacturing Research Corporation of Ontario.  相似文献   

2.
This paper considers the impact of random machine breakdowns on the classical Economic Production Quantity (EPQ) model for a product subject to exponential decay and under a no-resumption (NR) inventory control policy. A product is manufactured in batches on a machine that is subject to random breakdowns in order to meet a constant demand over an infinite planning horizon. The product is assumed to have a significant rate of deterioration and time to deterioration is described by an exponential distribution. Also, the time-to-breakdown is a random variable following an exponential distribution. Under the NR policy, when a breakdown occurs during a production run, the run is immediately aborted. A new run will not be started until all available inventories are depleted. Corrective maintenance of the production system is carried out immediately after a breakdown and it takes a fixed period of time to complete such an activity. The objective is to determine the optimal production uptime that minimizes the expected total cost per unit time consisting of setup, corrective maintenance, inventory carrying, deterioration, and lost sales costs. A near optimal production uptime is derived under conditions of continuous review, deterministic demand, and no shortages.  相似文献   

3.
The purpose of this paper is to present an exact formulation of stochastic EMQ model for an unreliable production system under a general framework in which the time to machine failure, corrective (emergency) and preventive (regular) repair times are assumed to be random variables. For exact financial implications of the lot-sizing decisions, the EMQ model is formulated based on the net present value (NPV) approach. Then, by taking limitation on the discount rate, the traditional long-run average cost model is obtained. The criteria for the existence and uniqueness of the optimal production time in both the models are derived under general failure and specific repair time distributions. Numerical examples are devoted to find the optimal production policies of the developed models and examine the sensitivity of the parameters involved. Computational results show that the optimal decision based on the NPV approach is superior to that based on the long-run average cost approach, though the performance level strongly depends on the pertinent failure and repair time distributions.  相似文献   

4.
In this article, we develop an imperfect economic manufacturing quantity (EMQ) model for an unreliable production system subject to process deterioration, machine breakdown and repair and buffer stock. The basic model is developed under general process shift, machine breakdown and repair time distributions. We suggest a computational algorithm for determination of the optimal safety stock and production run time which minimize the expected cost per unit time in the steady state. For a numerical example, we illustrate the outcome of the proposed model and perform a sensitivity analysis with respect to the model-parameters which have direct influence on the optimal decisions.  相似文献   

5.
变质品生产过程,可能率先出现"次品"的不稳定生产情形,随后机器崩坍;生产状态稳定性迁移时机、机器崩坍时间、维修时间皆乃随机变量;同时,企业无法观测当期需求,只能根据前期需求而随机地安排启动生产时刻.理论模型及数值算例皆表明,此种情况下,企业可以非等周期生产,存在组织生产次数(N)与生产率(P)的优解.敏感度分析看出,当需求拖后率增加、变质率+次品率降低时,企业成本显著降低,但首期生产启动时刻、生产率几乎没有变化.  相似文献   

6.
In this article, we study an economic manufacturing quantity (EMQ) problem for an unreliable production facility where the production rate is treated as a decision variable. As the stress condition of the machine changes with the production rate, the failure rate of the machine is assumed to be dependent on the production rate. The unit production cost is also taken as a function of the production rate, as the machine can be operated at different production rates resulting in different unit production costs. The basic EMQ model is formulated under general failure and general repair time distributions and the optimal production policy is derived for specific failure and repair time distributions viz., exponential failure and exponential repair time distributions. Considering randomness of the time to machine failure and corrective repair time, the model is extended to the case where certain safety stocks in inventory may be useful to improve service level to customers. Optimal production policies of the proposed models are derived numerically and the sensitivity of the optimal results with respect to those parameters which directly influence the machine failure and repair rates is also examined.  相似文献   

7.
We consider a production planning problem for a dynamic jobshop producing a number of products and subject to breakdown and repair of machines. The machine capacities are assumed to be finite-state Markov chains. As the rates of change of the machine states approach infinity, an asymptotic analysis of this stochastic manufacturing systems is given. The analysis results in a limiting problem in which the stochastic machine availability is replaced by its equilibrium mean availability. The long-run average cost for the original problem is shown to converge to the long-run average cost of the limiting problem. The convergence rate of the long-run average cost for the original problem to that of the limiting problem together with an error estimate for the constructed asymptotic optimal control is established.  相似文献   

8.
In this article we develop an economic manufacturing quantity (EMQ) model subject to stochastic machine breakdown, repair and stock threshold level (STL). Instead of constant production rate, in this model production rate is considered as a decision variable. Since, the stress of the machine depends on the production rate, failure rate of the machine will be a function of the production rate. Again, in this article consideration of safety stock in all existing literature is replaced by the concept of stock threshold level (STL). Further, extra capacity of the machine is considered to buffer against the possible uncertainties of the production process where machine capacity is predetermined. The basic model is developed under general failure and general repair time distributions. Since, the assumption of variable production rate makes the objective function quite complex, so main emphasis is given on computational methodology to solve the present problem. We suggest two computational algorithms for the determination of production rate and stock threshold level which minimize the expected cost rate in the steady state. Finally, through numerical examples we illustrate the key insights of our model from managerial point of view.  相似文献   

9.
This paper addresses the dynamic lot sizing model with the assumption that the equipment is subject to stochastic breakdowns. We consider two different situations. First we assume that after a machine breakdown the setup is totally lost and new setup cost is incurred. Second we consider the situation in which the cost of resuming the production run after a failure might be substantially lower than the production setup cost. We show that under the first assumption the cost penalty for ignoring machine failures will be noticeably higher than in the classical lot sizing case with static demand. For the second case, two lot sizes per period are required, an ordinary lot size and a specific second (or resumption) lot size. If during the production of a future period demand the production quantity exceeds the second lot size, the production run will be resumed after a breakdown and terminated if the amount produced is less than this lot size. Considering the results of the static lot sizing case, one would expect a different policy. To find an optimum lot sizing decision for both cases a stochastic dynamic programming model is suggested.  相似文献   

10.
This paper is concerned with determination of optimal run time for an economic production quantity (EPQ) model with scrap, rework, and stochastic machine breakdowns. In real life manufacturing systems, generation of defective items and random breakdown of production equipment are inevitable. In this study, a portion of the defective items is considered to be scrap, while the other is assumed to be repairable. Total production-inventory cost functions are derived respectively for both EPQ models with breakdown (no-resumption policy is adopted) and without breakdown taking place. These cost functions are integrated and the renewal reward theorem is used to cope with the variable cycle length. Theorems on conditional convexity of the integrated overall costs and bounds of the production run time are proposed and proved. We conclude that the optimal run time falls within the range of bounds and it can be pinpointed by the use of the bisection method based on the intermediate value theorem. Numerical example is provided to demonstrate its practical usages.  相似文献   

11.
The paper presents a generalized economic manufacturing quantity model for an unreliable production system in which the production facility may shift from an ‘in-control’ state to an ‘out-of-control’ state at any random time (when it starts producing defective items) and may ultimately break down afterwards. If a machine breakdown occurs during a production run, then corrective repair is done; otherwise, preventive repair is performed at the end of the production run to enhance the system reliability. The proposed model is formulated assuming that the time to machine breakdown, corrective and preventive repair times follow arbitrary probability distributions. However, the criteria for the existence and uniqueness of the optimal production time are derived under general breakdown and uniform repair time (corrective and preventive) distributions. The optimal production run time is determined numerically and the joint effect of process deterioration, machine breakdowns and repairs (corrective and preventive) on the optimal decisions is investigated for a numerical example.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(7-8):2296-2301
This study explores the economic production quantity model with scrap, rework and stochastic machine breakdown. The main purpose of this paper is twofold:(P1) This paper will adopt the rigorous methods of mathematics to demonstrate that the expected total cost per unit time is convex on all positive numbers to improve the conditional convexity in Theorem 1 of Chiu et al. (2010) [7].(P2) This paper gives the concrete proof to provide bounds for the optimal production run time to remove the logical shortcomings of mathematics presented in proof of Theorem 2 of Chiu et al. (2010) [7].  相似文献   

13.
多用户多准则随机系统最优与最优收费   总被引:1,自引:0,他引:1  
针对固定交通需求量和出行者的时间价值为离散分布的多准则随机交通均衡,分别研究了依费用度量和依时间度量的多用户多准则随机系统最优和最优收费问题.分别建立了基于费用和基于时间的随机系统最优的最优化模型,阐述了该模型解的唯一性条件及等价的变分不等式问题.运用变分不等式方法,研究了一阶最优收费的可行性,即能否依边际定价原则,通过收取与出行者类别无关的道路收费使多用户多准则随机均衡流与随机系统最优流一致.一阶最优收费不适用于依时间度量的随机系统最优情况,因而建立了一个最优化模型来得到此时的非歧视性道路收费.最后给出了具体算例.  相似文献   

14.
This work investigates the production planning of an unreliable deteriorating manufacturing system under uncertainties. The effect of the deterioration phenomenon on the machine is mainly observed in its availability and the quality of the parts produced, with the rates of failure and defectives increasing with the age of the machine. The option to replace the machine should be considered to mitigate the effect of deterioration in order to ensure long-term satisfaction of demand. The objective of this paper is to find the production rate and the replacement policy that minimize the total discounted cost, which includes inventory, backlog, production, repair and replacement costs, over an infinite planning horizon. We formulate the stochastic control problem in the framework of a semi-Markov decision process to consider the machine's history. The integration of random demand and quality behaviour led us to propose a new modeling approach by developing optimality conditions in terms of a second-order approximation of Hamilton–Jacobi–Bellman (HJB) equations. Numerical methods are used to obtain the optimal control policies. Finally, a numerical example and a sensitivity analysis are presented in order to illustrate and confirm the structure of the optimal solution obtained.  相似文献   

15.
This paper is concerned with the optimal production planning in a dynamic stochastic manufacturing system consisting of a single machine that is failure prone and facing a constant demand. The objective is to choose the rate of production over time in order to minimize the long-run average cost of production and surplus. The analysis proceeds with a study of the corresponding problem with a discounted cost. It is shown using the vanishing discount approach that the Hamilton–Jacobi–Bellman equation for the average cost problem has a solution giving rise to the minimal average cost and the so-called potential function. The result helps in establishing a verification theorem. Finally, the optimal control policy is specified in terms of the potential function.  相似文献   

16.
A perishable single item production-inventory system is studied in this paper. The objective is to describe a general model in which the production rate, the product demand rate, and the item deterioration rate are all considered as functions of time, and to discuss the optimal production stopping and restarting times which minimise the total relevant cost per unit time. In the general model, demand shortage is allowed, where some of the demand is lost and the rest is backlogged. Popular models, such as the pure inventory system and the zero shortage system, are shown to be special cases of our model. The conditions for a feasible stationary point to be optimal are given. The simplest cases with constant rates of production, demand and deterioration are discussed and shown as illustrative examples.  相似文献   

17.
In this work the problem of obtaining an optimal maintenance policy for a single-machine, single-product workstation that deteriorates over time is addressed, using Markov Decision Process (MDP) models. Two models are proposed. The decision criteria for the first model is based on the cost of performing maintenance, the cost of repairing a failed machine and the cost of holding inventory while the machine is not available for production. For the second model the cost of holding inventory is replaced by the cost of not satisfying the demand. The processing time of jobs, inter-arrival times of jobs or units of demand, and the failure times are assumed to be random. The results show that in order to make better maintenance decisions the interaction between the inventory (whether in process or final), and the number of shifts that the machine has been working without restoration, has to be taken into account. If this interaction is considered, the long-run operational costs are reduced significantly. Moreover, structural properties of the optimal policies of the models are obtained after imposing conditions on the parameters of the models and on the distribution of the lifetime of a recently restored machine.  相似文献   

18.
In this paper, we deal with the production scheduling ofseveral products that are produced periodically, in a fixed sequence, ona single machine. In the literature, this problem is usually referred to asthe Common Cycle Economic Lot Scheduling Problem. We extend thelatter to allow the production rates to be controllable at the beginningof as well as during each production run of a product. Also, we assumethat unsatisfied demand is completely backordered. The objective is todetermine the optimal schedule that satisfies the demand for all theproducts and that realizes the minimum average setup, inventoryholding and backlog cost per unit time. Comparison with previousresults (when production rates are fixed) reveals that averagecosts can be reduced up to 66% by allowing controllable productionrates.  相似文献   

19.
20.
We consider a production planning problem in a two-machine flowshop subject to breakdown and repair of machines and subject to nonnegativity and upper bound constraints on work-in-process. The objective is to choose machine production rates over time to minimize the long-run average inventory/backlog and production costs. For sufficiently large upper bound on the work-in-process, the problem is formulated as a stochastic dynamic program. We then establish a verification theorem and a partial characterization of the optimal control policy if it exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号