首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
韩国强 《计算数学》1994,16(4):418-431
非线性积分方程迭代配置法的渐近展开及其外推韩国强(华南理工大学计算机工程与科学系)ASYMPTOTICERROREXMNSIONSANDEXTRAPOLATIONFORTHEITERATEDCOLLOCATIONMETHODSOFNONLINEARI...  相似文献   

2.
A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.  相似文献   

3.
The Wright-Fisher model is an It? stochastic differential equation that was originally introduced to model genetic drift within finite populations and has recently been used as an approximation to ion channel dynamics within cardiac and neuronal cells. While analytic solutions to this equation remain within the interval [0,1], current numerical methods are unable to preserve such boundaries in the approximation. We present a new numerical method that guarantees approximations to a form of Wright-Fisher model, which includes mutation, remain within [0,1] for all time with probability one. Strong convergence of the method is proved and numerical experiments suggest that this new scheme converges with strong order 1/2. Extending this method to a multidimensional case, numerical tests suggest that the algorithm still converges strongly with order 1/2. Finally, numerical solutions obtained using this new method are compared to those obtained using the Euler-Maruyama method where the Wiener increment is resampled to ensure solutions remain within [0,1].  相似文献   

4.
Some new nonlinear analytical solutions are found for axisymmetric horizontal flows dominated by strong heat sources. These flows are common in multiscale atmospheric and oceanic flows such as hurricane embryos and ocean gyres. The analytical solutions are illustrated with several examples. The proposed exact solutions provide analytical support for previous numerical observations and can be also used as benchmark problems for validating numerical models. A central weighted essentially non-oscillatory (CWENO) reconstruction is also employed for numerical simulation of the corresponding integro-differential equations. Due to the use of the same polynomial reconstruction for all derivatives and integral terms, the balance between those terms is well preserved, and the method can precisely reproduce the exact solutions, which are hard to capture by traditional upwind schemes. The developed analytical solutions were employed to evaluate the performance of the numerical method, which showed an excellent performance of the numerical model in terms of numerical diffusion and oscillation.  相似文献   

5.
The authors study the multi-soliton,multi-cuspon solutions to the CamassaHolm equation and their interaction.According to the solution formula due to Li in 2004and 2005,the authors give the proper choi...  相似文献   

6.
王琦  汪小明 《计算数学》2015,37(1):57-66
本文研究了用以描述单物种人口模型的延迟Logistic方程的数值振动性.对方程应用隐式Euler方法进行求解,针对离散格式定义了指数隐式Euler方法,证明了该方法的收敛阶为1.根据线性振动性理论获得了数值解振动的充分条件.进而还对非振动数值解的性质作了讨论.最后用数值算例对理论结果进行了验证.  相似文献   

7.
In this paper, the random finite difference method with three points is used in solving random partial differential equations problems mainly: random parabolic, elliptic and hyperbolic partial differential equations. The conditions of the mean square convergence of the numerical solutions are studied. The numerical solutions are computed through some numerical case studies.  相似文献   

8.
In this paper, Adomian’s decomposition method is used to solve non-linear differential equations which arise in fluid dynamics. We study basic flow problems of a third grade non-Newtonian fluid between two parallel plates separated by a finite distance. The technique of Adomian decomposition is successfully applied to study the problem of a non-Newtonian plane Couette flow, fully developed plane Poiseuille flow and plane Couette–Poiseuille flow. The results obtained show the reliability and efficiency of this analytical method. Numerical solutions are also obtained by solving non-linear ordinary differential equations using Chebyshev spectral method. We present a comparative study between the analytical solutions and numerical solutions. The analytical results are found to be in good agreement with numerical solutions which reveals the effectiveness and convenience of the Adomian decomposition method.  相似文献   

9.
This paper presents a mixed method for the numerical solution of the one-dimensional Burgers' equation. This method uses mixed boundary elements in association with finite differences. Two standard problems are used to validated the algorithm. Comparisons are made with some of the existing numerical schemes and analytical solutions. The proposed method performs well.  相似文献   

10.
This paper carries out the integration of a few nonlinear wave equations to obtain topological as well as non-topological soliton solutions. The mathematical techniques used to obtain the soliton solutions are He’s variational iteration method, the tanh method and the ansatz method. The nonlinear wave equations that are studied are coupled mKdV equations, Drinfeld-Sokolov equation and its generalized version. Finally, some numerical simulations are given to support the analytical solutions.  相似文献   

11.
We develop a characteristic‐based domain decomposition and space–time local refinement method for first‐order linear hyperbolic equations. The method naturally incorporates various physical and numerical interfaces into its formulation and generates accurate numerical solutions even if large time‐steps are used. The method fully utilizes the transient and strongly local behavior of the solutions of hyperbolic equations and provides solutions with significantly improved accuracy and efficiency. Several numerical experiments are presented to illustrate the performance of the method and for comparison with other domain decomposition and local refinement schemes. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 1–28, 1999  相似文献   

12.
讨论了一类带Markov跳时变随机种群收获系统的数值解问题.利用EulerMaruyama方法给出了时变种群系统的数值解表达式,在局部Lipschitz条件下,证明了方程的数值解在均方意义下收敛于其解析解.最后,通过数值例子对所给出的结论进行了验证.  相似文献   

13.
In this paper, a suitable transformation and a so-called Exp-function method are used to obtain different types of exact solutions for the generalized Klein–Gordon equation. These exact solutions are in full agreement with the previous results obtained in Refs. [Sirendaoreji, Auxiliary equation method and new solutions of Klein–Gordon equations, Chaos, Solitons & Fractals 31 (4) (2007) 943–950; Huiqun Zhang, Extended Jacobi elliptic function expansion method and its applications, Communications in Nonlinear Science and Numerical Simulation, 12 (5) (2007) 627–635]. One of these exact solutions is compared with the approximate solutions obtained by the modified decomposition method. Accurate numerical results for a wider range of time are obtained after using different types of ADM-Padè approximation. Our results show that the Exp-function method is very effective in finding exact solutions for the problem considered while the modified decomposition method is very powerful in finding numerical solutions with good accuracy for nonlinear PDE without any need for a transformation or perturbation.  相似文献   

14.
李宏  孙萍  尚月强  罗振东 《计算数学》2012,34(4):413-424
本文利用有限体积元方法研究二维粘弹性方程, 给出一种时间二阶精度的全离散化有限体积元格式, 并给出这种全离散化有限体积元解的误差估计, 最后用数值例子验证数值结果与理论结果是相吻合的. 通过与有限元方法和有限差分方法相比较, 进一步说明了全离散化有限体积元格式是求解二维粘弹性方程数值解的最有效方法之一.  相似文献   

15.
Asymptotic and numerical methods are used to study several classes of singularly perturbed boundary value problems for which the underlying homogeneous operators have exponentially small eigenvalues. Examples considered include the familiar boundary layer resonance problems and some extensions and certain linearized equations associated with metastable internal layer motion. For the boundary layer resonance problems, a systematic projection method, motivated by the work of De Groen [1], is used to analytically calculate high-order asymptotic solutions. This method justifies and extends some previous results obtained from the variational method of Grasman and Matkowsky [2]. A numerical approach, based on an integral equation formulation, is used to accurately compute boundary layer resonance solutions and their associated exponentially small eigenvalues. For various examples, the numerical results are shown to compare very favorably with two-term asymptotic results. Finally, some Sturm-Liouville operators with exponentially small spectral gap widths are studied. One such problem is applied to analyzing metastable internal layer motion for a certain forced Burgers equation.  相似文献   

16.
一维Burgers方程和KdV方程的广义有限谱方法   总被引:2,自引:0,他引:2  
给出了高精度的广义有限谱方法.为使方法在时间离散方面保持高精度,采用了Adams-Bashforth 预报格式和Adams-Moulton校正格式,为了避免由Korteweg-de Vries(KdV)方程的弥散项引起的数值振荡, 给出了两种数值稳定器.以Legendre多项式、Chebyshev多项式和Hermite多项式为基函数作为例子,给出的方法与具有分析解的Burgers方程的非线性对流扩散问题和KdV方程的单孤独波和双孤独波传播问题进行了比较,结果非常吻合.  相似文献   

17.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

18.
In this paper, we present a reliable algorithm to study the known model of nonlinear dispersive waves proposed by Boussinesq. The modified algorithm of Adomian decomposition method is used with an emphasis on the single soliton solution. New exact periodic solutions and polynomial solutions are obtained. The results of numerical examples are presented and only few terms are required to obtain accurate solutions.  相似文献   

19.
A multiplicity result of existence of periodic solutions with prescribed wavelength for a class of fourth-order nonautonomous differential equations related either to the extended Fisher-Kolmogorov or to the Swift-Hohenberg equation is proved. Variational approach is used. Some numerical solutions are calculated via the finite element method.  相似文献   

20.
In this paper, the block pulse functions (BPFs) and their operational matrix are used to solve two-dimensional Fredholm-Volterra integral equations (F-VIE). This method converts F-VIE to systems of linear equations whose solutions are the coefficients of block pulse expansions of the solutions of F-VIE.Finally some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号