首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Applied Mathematical Modelling》2014,38(17-18):4388-4395
Linear programming (LP) is a widely used optimization method for solving real-life problems because of its efficiency. Although precise data are fundamentally indispensable in conventional LP problems, the observed values of the data in real-life problems are often imprecise. Fuzzy sets theory has been extensively used to represent imprecise data in LP by formalizing the inaccuracies inherent in human decision-making. The fuzzy LP (FLP) models in the literature generally either incorporate the imprecisions related to the coefficients of the objective function, the values of the right-hand-side, and/or the elements of the coefficient matrix. We propose a new method for solving FLP problems in which the coefficients of the objective function and the values of the right-hand-side are represented by symmetric trapezoidal fuzzy numbers while the elements of the coefficient matrix are represented by real numbers. We convert the FLP problem into an equivalent crisp LP problem and solve the crisp problem with the standard primal simplex method. We show that the method proposed in this study is simpler and computationally more efficient than two competing FLP methods commonly used in the literature.  相似文献   

2.
In the literature, several methods are proposed for solving transportation problems in fuzzy environment but in all the proposed methods the parameters are represented by normal fuzzy numbers. [S.H. Chen, Operations on fuzzy numbers with function principal, Tamkang Journal of Management Sciences 6 (1985) 13–25] pointed out that in many cases it is not to possible to restrict the membership function to the normal form and proposed the concept of generalized fuzzy numbers. There are several papers in the literature in which generalized fuzzy numbers are used for solving real life problems but to the best of our knowledge, till now no one has used generalized fuzzy numbers for solving the transportation problems. In this paper, a new method is proposed for solving fuzzy transportation problems by assuming that a decision maker is uncertain about the precise values of the transportation cost, availability and demand of the product. In the proposed method transportation cost, availability and demand of the product are represented by generalized trapezoidal fuzzy numbers. To illustrate the proposed method a numerical example is solved and the obtained results are compared with the results of existing methods. Since the proposed method is a direct extension of classical method so the proposed method is very easy to understand and to apply on real life transportation problems for the decision makers.  相似文献   

3.
In this paper we first recall some definitions and results of fuzzy plane geometry, and then introduce some definitions in the geometry of two-dimensional fuzzy linear programming (FLP). After defining the optimal solution based on these definitions, we use the geometric approach for obtaining optimal solution(s) and show that the algebraic solutions obtained by Zimmermann method (ZM) and our geometric solutions are the same. Finally, numerical examples are solved by these two methods.  相似文献   

4.
In published works on fuzzy linear programming there are only few papers dealing with stability or sensitivity analysis in fuzzy mathematical programming. To the best of our knowledge, till now there is no method in the literature to deal with the sensitivity analysis of such fuzzy linear programming problems in which all the parameters are represented by LR flat fuzzy numbers. In this paper, a new method, named as Mehar’s method, is proposed for the same. To show the advantages of proposed method over existing methods, some fuzzy sensitivity analysis problems which may or may not be solved by the existing methods are solved by using the proposed method.  相似文献   

5.
《Applied Mathematical Modelling》2014,38(5-6):1660-1672
Fuzzy linear programming with trapezoidal fuzzy numbers (TrFNs) is considered and a new method is developed to solve it. In this method, TrFNs are used to capture imprecise or uncertain information for the imprecise objective coefficients and/or the imprecise technological coefficients and/or available resources. The auxiliary multi-objective programming is constructed to solve the corresponding possibility linear programming with TrFNs. The auxiliary multi-objective programming involves four objectives: minimizing the left spread, maximizing the right spread, maximizing the left endpoint of the mode and maximizing the middle point of the mode. Three approaches are proposed to solve the constructed auxiliary multi-objective programming, including optimistic approach, pessimistic approach and linear sum approach based on membership function. An investment example and a transportation problem are presented to demonstrate the implementation process of this method. The comparison analysis shows that the fuzzy linear programming with TrFNs developed in this paper generalizes the possibility linear programming with triangular fuzzy numbers.  相似文献   

6.
This paper proposes a method for solving linear programming problems where all the coefficients are, in general, fuzzy numbers. We use a fuzzy ranking method to rank the fuzzy objective values and to deal with the inequality relation on constraints. It allows us to work with the concept of feasibility degree. The bigger the feasibility degree is, the worst the objective value will be. We offer the decision-maker (DM) the optimal solution for several different degrees of feasibility. With this information the DM is able to establish a fuzzy goal. We build a fuzzy subset in the decision space whose membership function represents the balance between feasibility degree of constraints and satisfaction degree of the goal. A reasonable solution is the one that has the biggest membership degree to this fuzzy subset. Finally, to illustrate our method, we solve a numerical example.  相似文献   

7.
Recently, linear programming problems with symmetric fuzzy numbers (LPSFN) have considered by some authors and have proposed a new method for solving these problems without converting to the classical linear programming problem, where the cost coefficients are symmetric fuzzy numbers (see in [4]). Here we extend their results and first prove the optimality theorem and then define the dual problem of LPSFN problem. Furthermore, we give some duality results as a natural extensions of duality results for linear programming problems with crisp data.  相似文献   

8.
This note shows that solving fully fuzzy linear programming (FFLP) model presented by Kumar et al. [A. Kumar, J. Kaur, P. Singh, A new method for solving fully fuzzy linear programming problems, Appl. Math. Model. 35 (2011) 817–823] needs some corrections to make the model well in general. A new version is provided in this note. A simple example is also presented to demonstrate the new form.  相似文献   

9.
In this paper, two new algorithms are presented to solve multi-level multi-objective linear programming (ML-MOLP) problems through the fuzzy goal programming (FGP) approach. The membership functions for the defined fuzzy goals of all objective functions at all levels are developed in the model formulation of the problem; so also are the membership functions for vectors of fuzzy goals of the decision variables, controlled by decision makers at the top levels. Then the fuzzy goal programming approach is used to achieve the highest degree of each of the membership goals by minimizing their deviational variables and thereby obtain the most satisfactory solution for all decision makers.  相似文献   

10.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

11.
This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.  相似文献   

12.
An efficient method for solving linear goal programming problems   总被引:6,自引:0,他引:6  
This note proposes a solution algorithm for linear goal programming problems. The proposed method simplifies the traditional solution methods. Also, the proposed method is computationally efficient.  相似文献   

13.
Narasimhan incorporated fuzzy set theory within goal programming formulation in 1980. Since then numerous research has been carried out in this field. One of the well-known models for solving fuzzy goal programming problems was proposed by Hannan in 1981. In this paper the conventional MINMAX approach in goal programming is applied to solve fuzzy goal programming problems. It is proved that the proposed model is an extension to Hannan model that deals with unbalanced triangular linear membership functions. In addition, it is shown that the new model is equivalent to a model proposed in 1991 by Yang et al. Moreover, a weighted model of the new approach is introduced and is compared with Kim and Whang’s model presented in 1998. A numerical example is given to demonstrate the validity and strengths of the new models.  相似文献   

14.
双层规划在经济、交通、生态、工程等领域有着广泛而重要的应用.目前对双层规划的研究主要是基于强双层规划和弱双层规划.然而,针对弱双层规划的求解方法却鲜有研究.研究求解弱线性双层规划问题的一种全局优化方法,首先给出弱线性双层规划问题与其松弛问题在最优解上的关系,然后利用线性规划的对偶理论和罚函数方法,讨论该松弛问题和它的罚问题之间的关系.进一步设计了一种求解弱线性双层规划问题的全局优化方法,该方法的优势在于它仅仅需要求解若干个线性规划问题就可以获得原问题的全局最优解.最后,用一个简单算例说明了所提出的方法是可行的.  相似文献   

15.
This note concerns a method for analyzing insoluble multicriteria linear programming problems.  相似文献   

16.
In this paper, we propose a method of solving the fully fuzzified linear fractional programming problems, where all the parameters and variables are triangular fuzzy numbers. We transform the problem of maximizing a function with triangular fuzzy value into a deterministic multiple objective linear fractional programming problem with quadratic constraints. We apply the extension principle of Zadeh to add fuzzy numbers, an approximate version of the same principle to multiply and divide fuzzy numbers and the Kerre’s method to evaluate a fuzzy constraint. The results obtained by Buckley and Feuring in 2000 applied to fractional programming and disjunctive constraints are taken into consideration here. The method needs to add extra zero-one variables for treating disjunctive constraints. In order to illustrate our method we consider a numerical example.  相似文献   

17.
In this paper, we consider the class of linearly constrained nonconvex quadratic programming problems, and present a new approach based on a novel Reformulation-Linearization/Convexification Technique. In this approach, a tight linear (or convex) programming relaxation, or outer-approximation to the convex envelope of the objective function over the constrained region, is constructed for the problem by generating new constraints through the process of employing suitable products of constraints and using variable redefinitions. Various such relaxations are considered and analyzed, including ones that retain some useful nonlinear relationships. Efficient solution techniques are then explored for solving these relaxations in order to derive lower and upper bounds on the problem, and appropriate branching/partitioning strategies are used in concert with these bounding techniques to derive a convergent algorithm. Computational results are presented on a set of test problems from the literature to demonstrate the efficiency of the approach. (One of these test problems had not previously been solved to optimality). It is shown that for many problems, the initial relaxation itself produces an optimal solution.  相似文献   

18.
《Optimization》2012,61(9):2047-2048
This note is aimed to correct the strong duality theorem of previous paper regarding the continuous-time linear programming problems. The argument presented in the previous paper can only be used to prove the case of piecewise continuous functions in which the discontinuities are the left-continuities.  相似文献   

19.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed.  相似文献   

20.
Any modern industrial manufacturing unit inevitably faces problemsof vagueness in various aspects such as raw material availability,human resource availability, processing capability and constraintsand limitations imposed by the marketing department. Such acomplex problem of vagueness and uncertainty can be handledby the theory of fuzzy logic. In this paper, a new fuzzy logicbased methodology using a S-curve membership function is usedto solve a fuzzy mix product selection problem in industrialengineering. Profits and satisfaction levels have been computedusing a fuzzy linear programming approach. Since there are severaldecisions to be taken, a performance measure has been definedto identify the decision that achieves a high level of profitwith a high degree of satisfaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号